blob: 59cfd1841c40cb3fa3e823fc032ca0acf5fb1b7a [file] [log] [blame]
#!/usr/bin/env perl
$flavour = shift;
$output = shift;
if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
( $xlate="${dir}perlasm/x86_64-xlate.pl" and -f $xlate) or
die "can't locate x86_64-xlate.pl";
open OUT,"| \"$^X\" $xlate $flavour $output";
*STDOUT=*OUT;
($arg1,$arg2,$arg3,$arg4)=$win64?("%rcx","%rdx","%r8", "%r9") : # Win64 order
("%rdi","%rsi","%rdx","%rcx"); # Unix order
print<<___;
.text
.globl OPENSSL_ia32_cpuid
.type OPENSSL_ia32_cpuid,\@function,1
.align 16
OPENSSL_ia32_cpuid:
# On Windows, $arg1 is rcx, but that will be clobbered. So make Windows
# use the same register as Unix.
mov $arg1,%rdi
mov %rbx,%r8 # save %rbx
xor %eax,%eax
mov %eax,8(%rdi) # clear 3rd word
cpuid
mov %eax,%r11d # max value for standard query level
xor %eax,%eax
cmp \$0x756e6547,%ebx # "Genu"
setne %al
mov %eax,%r9d
cmp \$0x49656e69,%edx # "ineI"
setne %al
or %eax,%r9d
cmp \$0x6c65746e,%ecx # "ntel"
setne %al
or %eax,%r9d # 0 indicates Intel CPU
jz .Lintel
cmp \$0x68747541,%ebx # "Auth"
setne %al
mov %eax,%r10d
cmp \$0x69746E65,%edx # "enti"
setne %al
or %eax,%r10d
cmp \$0x444D4163,%ecx # "cAMD"
setne %al
or %eax,%r10d # 0 indicates AMD CPU
jnz .Lintel
# AMD specific
# See http://developer.amd.com/wordpress/media/2012/10/254811.pdf (1)
mov \$0x80000000,%eax
cpuid
# Returns "The largest CPUID extended function input value supported by
# the processor implementation." in EAX.
cmp \$0x80000001,%eax
jb .Lintel
mov %eax,%r10d
mov \$0x80000001,%eax
cpuid
# Returns feature bits in ECX. See page 20 of [1].
# TODO(fork): I think this should be a MOV.
or %ecx,%r9d
and \$0x00000801,%r9d # isolate AMD XOP bit, 1<<11
cmp \$0x80000008,%r10d
jb .Lintel
mov \$0x80000008,%eax
cpuid
# Returns APIC ID and number of cores in ECX. See page 27 of [1].
movzb %cl,%r10 # number of cores - 1
inc %r10 # number of cores
mov \$1,%eax
cpuid
# See page 13 of [1].
bt \$28,%edx # test hyper-threading bit
jnc .Lgeneric
shr \$16,%ebx # number of logical processors
cmp %r10b,%bl
ja .Lgeneric
and \$0xefffffff,%edx # Clear hyper-threading bit.
jmp .Lgeneric
.Lintel:
cmp \$4,%r11d
mov \$-1,%r10d
jb .Lnocacheinfo
mov \$4,%eax
mov \$0,%ecx # query L1D
cpuid
mov %eax,%r10d
shr \$14,%r10d
and \$0xfff,%r10d # number of cores -1 per L1D
cmp \$7,%r11d
jb .Lnocacheinfo
mov \$7,%eax
xor %ecx,%ecx
cpuid
mov %ebx,8(%rdi)
.Lnocacheinfo:
mov \$1,%eax
cpuid
# Gets feature information. See table 3-21 in the Intel manual.
and \$0xbfefffff,%edx # force reserved bits to 0
cmp \$0,%r9d
jne .Lnotintel
or \$0x40000000,%edx # set reserved bit#30 on Intel CPUs
and \$15,%ah
cmp \$15,%ah # examine Family ID
jne .Lnotintel
or \$0x00100000,%edx # set reserved bit#20 to engage RC4_CHAR
.Lnotintel:
bt \$28,%edx # test hyper-threading bit
jnc .Lgeneric
and \$0xefffffff,%edx # ~(1<<28) - clear hyper-threading.
cmp \$0,%r10d
je .Lgeneric
or \$0x10000000,%edx # 1<<28
shr \$16,%ebx
cmp \$1,%bl # see if cache is shared
ja .Lgeneric
and \$0xefffffff,%edx # ~(1<<28)
.Lgeneric:
and \$0x00000800,%r9d # isolate AMD XOP flag
and \$0xfffff7ff,%ecx
or %ecx,%r9d # merge AMD XOP flag
mov %edx,%r10d # %r9d:%r10d is copy of %ecx:%edx
bt \$27,%r9d # check OSXSAVE bit
jnc .Lclear_avx
xor %ecx,%ecx # XCR0
.byte 0x0f,0x01,0xd0 # xgetbv
and \$6,%eax # isolate XMM and YMM state support
cmp \$6,%eax
je .Ldone
.Lclear_avx:
mov \$0xefffe7ff,%eax # ~(1<<28|1<<12|1<<11)
and %eax,%r9d # clear AVX, FMA and AMD XOP bits
andl \$0xffffffdf,8(%rdi) # cleax AVX2, ~(1<<5)
.Ldone:
movl %r9d,4(%rdi)
movl %r10d,0(%rdi)
mov %r8,%rbx # restore %rbx
ret
.size OPENSSL_ia32_cpuid,.-OPENSSL_ia32_cpuid
___
close STDOUT; # flush