Don't allocate oversized arrays for bn_mul_recursive.

The power of two computations here were extremely confusing and one of
the comments mixed && and ||. Remove the cached k = j + j value.
Optimizing the j*8, j*8, j*2, and j*4 multiplications is the compiler's
job. If it doesn't manage it, it was only a couple shifts anyway.

With that fixed, it becomes easier to tell that rr was actaully
allocated twice as large as necessary. I suspect rr is also
incorrectly-allocated in the bn_mul_part_recursive case, but I'll wait
until I've checked that function over first. (The array size
documentation on the other bn_{mul,sqr}_recursive functions have had
mistakes before.)

Change-Id: I298400b988e3bd108d01d6a7c8a5b262ddf81feb
Reviewed-on: https://boringssl-review.googlesource.com/25364
Commit-Queue: David Benjamin <davidben@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
Reviewed-by: Adam Langley <agl@google.com>
1 file changed
tree: 919c82366bd61c64a27641a3d9f3c2ec24b9cf54
  1. .github/
  2. crypto/
  3. decrepit/
  4. fipstools/
  5. fuzz/
  6. include/
  7. infra/
  8. ssl/
  9. third_party/
  10. tool/
  11. util/
  12. .clang-format
  13. .gitignore
  14. API-CONVENTIONS.md
  15. BUILDING.md
  16. CMakeLists.txt
  17. codereview.settings
  18. CONTRIBUTING.md
  19. FUZZING.md
  20. INCORPORATING.md
  21. LICENSE
  22. PORTING.md
  23. README.md
  24. sources.cmake
  25. STYLE.md
README.md

BoringSSL

BoringSSL is a fork of OpenSSL that is designed to meet Google's needs.

Although BoringSSL is an open source project, it is not intended for general use, as OpenSSL is. We don't recommend that third parties depend upon it. Doing so is likely to be frustrating because there are no guarantees of API or ABI stability.

Programs ship their own copies of BoringSSL when they use it and we update everything as needed when deciding to make API changes. This allows us to mostly avoid compromises in the name of compatibility. It works for us, but it may not work for you.

BoringSSL arose because Google used OpenSSL for many years in various ways and, over time, built up a large number of patches that were maintained while tracking upstream OpenSSL. As Google's product portfolio became more complex, more copies of OpenSSL sprung up and the effort involved in maintaining all these patches in multiple places was growing steadily.

Currently BoringSSL is the SSL library in Chrome/Chromium, Android (but it's not part of the NDK) and a number of other apps/programs.

There are other files in this directory which might be helpful: