| /* ==================================================================== |
| * Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * openssl-core@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <openssl/ecdsa.h> |
| |
| #include <assert.h> |
| #include <string.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| |
| #include "../../internal.h" |
| #include "../bn/internal.h" |
| #include "../ec/internal.h" |
| #include "../service_indicator/internal.h" |
| #include "internal.h" |
| |
| |
| // digest_to_scalar interprets |digest_len| bytes from |digest| as a scalar for |
| // ECDSA. |
| static void digest_to_scalar(const EC_GROUP *group, EC_SCALAR *out, |
| const uint8_t *digest, size_t digest_len) { |
| const BIGNUM *order = EC_GROUP_get0_order(group); |
| size_t num_bits = BN_num_bits(order); |
| // Need to truncate digest if it is too long: first truncate whole bytes. |
| size_t num_bytes = (num_bits + 7) / 8; |
| if (digest_len > num_bytes) { |
| digest_len = num_bytes; |
| } |
| bn_big_endian_to_words(out->words, order->width, digest, digest_len); |
| |
| // If it is still too long, truncate remaining bits with a shift. |
| if (8 * digest_len > num_bits) { |
| bn_rshift_words(out->words, out->words, 8 - (num_bits & 0x7), order->width); |
| } |
| |
| // |out| now has the same bit width as |order|, but this only bounds by |
| // 2*|order|. Subtract the order if out of range. |
| // |
| // Montgomery multiplication accepts the looser bounds, so this isn't strictly |
| // necessary, but it is a cleaner abstraction and has no performance impact. |
| BN_ULONG tmp[EC_MAX_WORDS]; |
| bn_reduce_once_in_place(out->words, 0 /* no carry */, order->d, tmp, |
| order->width); |
| } |
| |
| int ecdsa_verify_fixed_no_self_test(const uint8_t *digest, size_t digest_len, |
| const uint8_t *sig, size_t sig_len, |
| const EC_KEY *eckey) { |
| const EC_GROUP *group = EC_KEY_get0_group(eckey); |
| const EC_POINT *pub_key = EC_KEY_get0_public_key(eckey); |
| if (group == NULL || pub_key == NULL || sig == NULL) { |
| OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_MISSING_PARAMETERS); |
| return 0; |
| } |
| |
| size_t scalar_len = BN_num_bytes(EC_GROUP_get0_order(group)); |
| EC_SCALAR r, s, u1, u2, s_inv_mont, m; |
| if (sig_len != 2 * scalar_len || |
| !ec_scalar_from_bytes(group, &r, sig, scalar_len) || |
| ec_scalar_is_zero(group, &r) || |
| !ec_scalar_from_bytes(group, &s, sig + scalar_len, scalar_len) || |
| ec_scalar_is_zero(group, &s)) { |
| OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE); |
| return 0; |
| } |
| |
| // s_inv_mont = s^-1 in the Montgomery domain. |
| if (!ec_scalar_to_montgomery_inv_vartime(group, &s_inv_mont, &s)) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_INTERNAL_ERROR); |
| return 0; |
| } |
| |
| // u1 = m * s^-1 mod order |
| // u2 = r * s^-1 mod order |
| // |
| // |s_inv_mont| is in Montgomery form while |m| and |r| are not, so |u1| and |
| // |u2| will be taken out of Montgomery form, as desired. |
| digest_to_scalar(group, &m, digest, digest_len); |
| ec_scalar_mul_montgomery(group, &u1, &m, &s_inv_mont); |
| ec_scalar_mul_montgomery(group, &u2, &r, &s_inv_mont); |
| |
| EC_JACOBIAN point; |
| if (!ec_point_mul_scalar_public(group, &point, &u1, &pub_key->raw, &u2)) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_EC_LIB); |
| return 0; |
| } |
| |
| if (!ec_cmp_x_coordinate(group, &point, &r)) { |
| OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_BAD_SIGNATURE); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| int ecdsa_verify_fixed(const uint8_t *digest, size_t digest_len, |
| const uint8_t *sig, size_t sig_len, const EC_KEY *key) { |
| boringssl_ensure_ecc_self_test(); |
| |
| return ecdsa_verify_fixed_no_self_test(digest, digest_len, sig, sig_len, key); |
| } |
| |
| static int ecdsa_sign_impl(const EC_GROUP *group, int *out_retry, uint8_t *sig, |
| size_t *out_sig_len, size_t max_sig_len, |
| const EC_SCALAR *priv_key, const EC_SCALAR *k, |
| const uint8_t *digest, size_t digest_len) { |
| *out_retry = 0; |
| |
| // Check that the size of the group order is FIPS compliant (FIPS 186-4 |
| // B.5.2). |
| const BIGNUM *order = EC_GROUP_get0_order(group); |
| if (BN_num_bits(order) < 160) { |
| OPENSSL_PUT_ERROR(EC, EC_R_INVALID_GROUP_ORDER); |
| return 0; |
| } |
| |
| size_t sig_len = 2 * BN_num_bytes(order); |
| if (sig_len > max_sig_len) { |
| OPENSSL_PUT_ERROR(EC, EC_R_BUFFER_TOO_SMALL); |
| return 0; |
| } |
| |
| // Compute r, the x-coordinate of k * generator. |
| EC_JACOBIAN tmp_point; |
| EC_SCALAR r; |
| if (!ec_point_mul_scalar_base(group, &tmp_point, k) || |
| !ec_get_x_coordinate_as_scalar(group, &r, &tmp_point)) { |
| return 0; |
| } |
| |
| if (constant_time_declassify_int(ec_scalar_is_zero(group, &r))) { |
| *out_retry = 1; |
| return 0; |
| } |
| |
| // s = priv_key * r. Note if only one parameter is in the Montgomery domain, |
| // |ec_scalar_mod_mul_montgomery| will compute the answer in the normal |
| // domain. |
| EC_SCALAR s; |
| ec_scalar_to_montgomery(group, &s, &r); |
| ec_scalar_mul_montgomery(group, &s, priv_key, &s); |
| |
| // s = m + priv_key * r. |
| EC_SCALAR tmp; |
| digest_to_scalar(group, &tmp, digest, digest_len); |
| ec_scalar_add(group, &s, &s, &tmp); |
| |
| // s = k^-1 * (m + priv_key * r). First, we compute k^-1 in the Montgomery |
| // domain. This is |ec_scalar_to_montgomery| followed by |
| // |ec_scalar_inv0_montgomery|, but |ec_scalar_inv0_montgomery| followed by |
| // |ec_scalar_from_montgomery| is equivalent and slightly more efficient. |
| // Then, as above, only one parameter is in the Montgomery domain, so the |
| // result is in the normal domain. Finally, note k is non-zero (or computing r |
| // would fail), so the inverse must exist. |
| ec_scalar_inv0_montgomery(group, &tmp, k); // tmp = k^-1 R^2 |
| ec_scalar_from_montgomery(group, &tmp, &tmp); // tmp = k^-1 R |
| ec_scalar_mul_montgomery(group, &s, &s, &tmp); |
| if (constant_time_declassify_int(ec_scalar_is_zero(group, &s))) { |
| *out_retry = 1; |
| return 0; |
| } |
| |
| CONSTTIME_DECLASSIFY(r.words, sizeof(r.words)); |
| CONSTTIME_DECLASSIFY(s.words, sizeof(r.words)); |
| size_t len; |
| ec_scalar_to_bytes(group, sig, &len, &r); |
| assert(len == sig_len / 2); |
| ec_scalar_to_bytes(group, sig + len, &len, &s); |
| assert(len == sig_len / 2); |
| *out_sig_len = sig_len; |
| return 1; |
| } |
| |
| int ecdsa_sign_fixed_with_nonce_for_known_answer_test( |
| const uint8_t *digest, size_t digest_len, uint8_t *sig, size_t *out_sig_len, |
| size_t max_sig_len, const EC_KEY *eckey, const uint8_t *nonce, |
| size_t nonce_len) { |
| if (eckey->ecdsa_meth && eckey->ecdsa_meth->sign) { |
| OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NOT_IMPLEMENTED); |
| return 0; |
| } |
| |
| const EC_GROUP *group = EC_KEY_get0_group(eckey); |
| if (group == NULL || eckey->priv_key == NULL) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| const EC_SCALAR *priv_key = &eckey->priv_key->scalar; |
| |
| EC_SCALAR k; |
| if (!ec_scalar_from_bytes(group, &k, nonce, nonce_len)) { |
| return 0; |
| } |
| int retry_ignored; |
| return ecdsa_sign_impl(group, &retry_ignored, sig, out_sig_len, max_sig_len, |
| priv_key, &k, digest, digest_len); |
| } |
| |
| int ecdsa_sign_fixed(const uint8_t *digest, size_t digest_len, uint8_t *sig, |
| size_t *out_sig_len, size_t max_sig_len, |
| const EC_KEY *eckey) { |
| boringssl_ensure_ecc_self_test(); |
| |
| if (eckey->ecdsa_meth && eckey->ecdsa_meth->sign) { |
| OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_NOT_IMPLEMENTED); |
| return 0; |
| } |
| |
| const EC_GROUP *group = EC_KEY_get0_group(eckey); |
| if (group == NULL || eckey->priv_key == NULL) { |
| OPENSSL_PUT_ERROR(ECDSA, ERR_R_PASSED_NULL_PARAMETER); |
| return 0; |
| } |
| const BIGNUM *order = EC_GROUP_get0_order(group); |
| const EC_SCALAR *priv_key = &eckey->priv_key->scalar; |
| |
| // Pass a SHA512 hash of the private key and digest as additional data |
| // into the RBG. This is a hardening measure against entropy failure. |
| static_assert(BCM_SHA512_DIGEST_LENGTH >= 32, |
| "additional_data is too large for SHA-512"); |
| |
| FIPS_service_indicator_lock_state(); |
| |
| SHA512_CTX sha; |
| uint8_t additional_data[BCM_SHA512_DIGEST_LENGTH]; |
| BCM_sha512_init(&sha); |
| BCM_sha512_update(&sha, priv_key->words, order->width * sizeof(BN_ULONG)); |
| BCM_sha512_update(&sha, digest, digest_len); |
| BCM_sha512_final(additional_data, &sha); |
| |
| // Cap iterations so callers who supply invalid values as custom groups do not |
| // infinite loop. This does not impact valid parameters (e.g. those covered by |
| // FIPS) because the probability of requiring even one retry is negligible, |
| // let alone 32. |
| static const int kMaxIterations = 32; |
| int ret = 0; |
| int iters = 0; |
| for (;;) { |
| EC_SCALAR k; |
| if (!ec_random_nonzero_scalar(group, &k, additional_data)) { |
| goto out; |
| } |
| |
| // TODO(davidben): Move this inside |ec_random_nonzero_scalar| or lower, so |
| // that all scalars we generate are, by default, secret. |
| CONSTTIME_SECRET(k.words, sizeof(k.words)); |
| |
| int retry; |
| ret = ecdsa_sign_impl(group, &retry, sig, out_sig_len, max_sig_len, |
| priv_key, &k, digest, digest_len); |
| if (ret || !retry) { |
| goto out; |
| } |
| |
| iters++; |
| if (iters > kMaxIterations) { |
| OPENSSL_PUT_ERROR(ECDSA, ECDSA_R_TOO_MANY_ITERATIONS); |
| goto out; |
| } |
| } |
| |
| out: |
| FIPS_service_indicator_unlock_state(); |
| return ret; |
| } |