blob: a579b36874ad19ca7d5a6a68b6d1df3e7f56b5dc [file] [log] [blame]
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright (c) 1998-2007 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com). */
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <openssl/bytestring.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include <openssl/mem.h>
#include <openssl/obj.h>
#include <openssl/rand.h>
#include "ssl_locl.h"
static int tls_decrypt_ticket(SSL *s, const uint8_t *tick, int ticklen,
const uint8_t *sess_id, int sesslen,
SSL_SESSION **psess);
static int ssl_check_clienthello_tlsext(SSL *s);
static int ssl_check_serverhello_tlsext(SSL *s);
const SSL3_ENC_METHOD TLSv1_enc_data = {
tls1_enc,
tls1_mac,
tls1_setup_key_block,
tls1_generate_master_secret,
tls1_change_cipher_state,
tls1_final_finish_mac,
TLS1_FINISH_MAC_LENGTH,
tls1_cert_verify_mac,
TLS_MD_CLIENT_FINISH_CONST,TLS_MD_CLIENT_FINISH_CONST_SIZE,
TLS_MD_SERVER_FINISH_CONST,TLS_MD_SERVER_FINISH_CONST_SIZE,
tls1_alert_code,
tls1_export_keying_material,
0,
SSL3_HM_HEADER_LENGTH,
ssl3_set_handshake_header,
ssl3_handshake_write,
};
const SSL3_ENC_METHOD TLSv1_1_enc_data = {
tls1_enc,
tls1_mac,
tls1_setup_key_block,
tls1_generate_master_secret,
tls1_change_cipher_state,
tls1_final_finish_mac,
TLS1_FINISH_MAC_LENGTH,
tls1_cert_verify_mac,
TLS_MD_CLIENT_FINISH_CONST,TLS_MD_CLIENT_FINISH_CONST_SIZE,
TLS_MD_SERVER_FINISH_CONST,TLS_MD_SERVER_FINISH_CONST_SIZE,
tls1_alert_code,
tls1_export_keying_material,
SSL_ENC_FLAG_EXPLICIT_IV,
SSL3_HM_HEADER_LENGTH,
ssl3_set_handshake_header,
ssl3_handshake_write,
};
const SSL3_ENC_METHOD TLSv1_2_enc_data = {
tls1_enc,
tls1_mac,
tls1_setup_key_block,
tls1_generate_master_secret,
tls1_change_cipher_state,
tls1_final_finish_mac,
TLS1_FINISH_MAC_LENGTH,
tls1_cert_verify_mac,
TLS_MD_CLIENT_FINISH_CONST,TLS_MD_CLIENT_FINISH_CONST_SIZE,
TLS_MD_SERVER_FINISH_CONST,TLS_MD_SERVER_FINISH_CONST_SIZE,
tls1_alert_code,
tls1_export_keying_material,
SSL_ENC_FLAG_EXPLICIT_IV|SSL_ENC_FLAG_SIGALGS|SSL_ENC_FLAG_SHA256_PRF
|SSL_ENC_FLAG_TLS1_2_CIPHERS,
SSL3_HM_HEADER_LENGTH,
ssl3_set_handshake_header,
ssl3_handshake_write,
};
static int compare_uint16_t(const void *p1, const void *p2) {
uint16_t u1 = *((const uint16_t *)p1);
uint16_t u2 = *((const uint16_t *)p2);
if (u1 < u2) {
return -1;
} else if (u1 > u2) {
return 1;
} else {
return 0;
}
}
/* Per http://tools.ietf.org/html/rfc5246#section-7.4.1.4, there may not be
* more than one extension of the same type in a ClientHello or ServerHello.
* This function does an initial scan over the extensions block to filter those
* out. */
static int tls1_check_duplicate_extensions(const CBS *cbs) {
CBS extensions = *cbs;
size_t num_extensions = 0, i = 0;
uint16_t *extension_types = NULL;
int ret = 0;
/* First pass: count the extensions. */
while (CBS_len(&extensions) > 0) {
uint16_t type;
CBS extension;
if (!CBS_get_u16(&extensions, &type) ||
!CBS_get_u16_length_prefixed(&extensions, &extension)) {
goto done;
}
num_extensions++;
}
if (num_extensions == 0) {
return 1;
}
extension_types =
(uint16_t *)OPENSSL_malloc(sizeof(uint16_t) * num_extensions);
if (extension_types == NULL) {
OPENSSL_PUT_ERROR(SSL, tls1_check_duplicate_extensions,
ERR_R_MALLOC_FAILURE);
goto done;
}
/* Second pass: gather the extension types. */
extensions = *cbs;
for (i = 0; i < num_extensions; i++) {
CBS extension;
if (!CBS_get_u16(&extensions, &extension_types[i]) ||
!CBS_get_u16_length_prefixed(&extensions, &extension)) {
/* This should not happen. */
goto done;
}
}
assert(CBS_len(&extensions) == 0);
/* Sort the extensions and make sure there are no duplicates. */
qsort(extension_types, num_extensions, sizeof(uint16_t), compare_uint16_t);
for (i = 1; i < num_extensions; i++) {
if (extension_types[i - 1] == extension_types[i]) {
goto done;
}
}
ret = 1;
done:
if (extension_types)
OPENSSL_free(extension_types);
return ret;
}
char ssl_early_callback_init(struct ssl_early_callback_ctx *ctx) {
CBS client_hello, session_id, cipher_suites, compression_methods, extensions;
CBS_init(&client_hello, ctx->client_hello, ctx->client_hello_len);
if (/* Skip client version. */
!CBS_skip(&client_hello, 2) ||
/* Skip client nonce. */
!CBS_skip(&client_hello, 32) ||
/* Extract session_id. */
!CBS_get_u8_length_prefixed(&client_hello, &session_id)) {
return 0;
}
ctx->session_id = CBS_data(&session_id);
ctx->session_id_len = CBS_len(&session_id);
/* Skip past DTLS cookie */
if (SSL_IS_DTLS(ctx->ssl)) {
CBS cookie;
if (!CBS_get_u8_length_prefixed(&client_hello, &cookie)) {
return 0;
}
}
/* Extract cipher_suites. */
if (!CBS_get_u16_length_prefixed(&client_hello, &cipher_suites) ||
CBS_len(&cipher_suites) < 2 || (CBS_len(&cipher_suites) & 1) != 0) {
return 0;
}
ctx->cipher_suites = CBS_data(&cipher_suites);
ctx->cipher_suites_len = CBS_len(&cipher_suites);
/* Extract compression_methods. */
if (!CBS_get_u8_length_prefixed(&client_hello, &compression_methods) ||
CBS_len(&compression_methods) < 1) {
return 0;
}
ctx->compression_methods = CBS_data(&compression_methods);
ctx->compression_methods_len = CBS_len(&compression_methods);
/* If the ClientHello ends here then it's valid, but doesn't have any
* extensions. (E.g. SSLv3.) */
if (CBS_len(&client_hello) == 0) {
ctx->extensions = NULL;
ctx->extensions_len = 0;
return 1;
}
/* Extract extensions and check it is valid. */
if (!CBS_get_u16_length_prefixed(&client_hello, &extensions) ||
!tls1_check_duplicate_extensions(&extensions) ||
CBS_len(&client_hello) != 0) {
return 0;
}
ctx->extensions = CBS_data(&extensions);
ctx->extensions_len = CBS_len(&extensions);
return 1;
}
char SSL_early_callback_ctx_extension_get(
const struct ssl_early_callback_ctx *ctx, uint16_t extension_type,
const uint8_t **out_data, size_t *out_len) {
CBS extensions;
CBS_init(&extensions, ctx->extensions, ctx->extensions_len);
while (CBS_len(&extensions) != 0) {
uint16_t type;
CBS extension;
/* Decode the next extension. */
if (!CBS_get_u16(&extensions, &type) ||
!CBS_get_u16_length_prefixed(&extensions, &extension)) {
return 0;
}
if (type == extension_type) {
*out_data = CBS_data(&extension);
*out_len = CBS_len(&extension);
return 1;
}
}
return 0;
}
/* ECC curves from RFC4492 */
static const int nid_list[] = {
NID_sect163k1, /* sect163k1 (1) */
NID_sect163r1, /* sect163r1 (2) */
NID_sect163r2, /* sect163r2 (3) */
NID_sect193r1, /* sect193r1 (4) */
NID_sect193r2, /* sect193r2 (5) */
NID_sect233k1, /* sect233k1 (6) */
NID_sect233r1, /* sect233r1 (7) */
NID_sect239k1, /* sect239k1 (8) */
NID_sect283k1, /* sect283k1 (9) */
NID_sect283r1, /* sect283r1 (10) */
NID_sect409k1, /* sect409k1 (11) */
NID_sect409r1, /* sect409r1 (12) */
NID_sect571k1, /* sect571k1 (13) */
NID_sect571r1, /* sect571r1 (14) */
NID_secp160k1, /* secp160k1 (15) */
NID_secp160r1, /* secp160r1 (16) */
NID_secp160r2, /* secp160r2 (17) */
NID_secp192k1, /* secp192k1 (18) */
NID_X9_62_prime192v1, /* secp192r1 (19) */
NID_secp224k1, /* secp224k1 (20) */
NID_secp224r1, /* secp224r1 (21) */
NID_secp256k1, /* secp256k1 (22) */
NID_X9_62_prime256v1, /* secp256r1 (23) */
NID_secp384r1, /* secp384r1 (24) */
NID_secp521r1, /* secp521r1 (25) */
NID_brainpoolP256r1, /* brainpoolP256r1 (26) */
NID_brainpoolP384r1, /* brainpoolP384r1 (27) */
NID_brainpoolP512r1 /* brainpool512r1 (28) */
};
static const uint8_t ecformats_default[] = {
TLSEXT_ECPOINTFORMAT_uncompressed,
};
static const uint16_t eccurves_default[] = {
23, /* secp256r1 (23) */
24, /* secp384r1 (24) */
25, /* secp521r1 (25) */
};
int tls1_ec_curve_id2nid(uint16_t curve_id) {
if (curve_id < 1 || curve_id > sizeof(nid_list) / sizeof(nid_list[0])) {
return OBJ_undef;
}
return nid_list[curve_id - 1];
}
uint16_t tls1_ec_nid2curve_id(int nid) {
size_t i;
for (i = 0; i < sizeof(nid_list) / sizeof(nid_list[0]); i++) {
/* nid_list[i] stores the NID corresponding to curve ID i+1. */
if (nid == nid_list[i]) {
return i + 1;
}
}
/* Use 0 for non-existent curve ID. Note: this assumes that curve ID 0 will
* never be allocated. */
return 0;
}
/* tls1_get_curvelist sets |*out_curve_ids| and |*out_curve_ids_len| to the
* list of allowed curve IDs. If |get_peer_curves| is non-zero, return the
* peer's curve list. Otherwise, return the preferred list. */
static void tls1_get_curvelist(SSL *s, int get_peer_curves,
const uint16_t **out_curve_ids,
size_t *out_curve_ids_len) {
if (get_peer_curves) {
*out_curve_ids = s->s3->tmp.peer_ellipticcurvelist;
*out_curve_ids_len = s->s3->tmp.peer_ellipticcurvelist_length;
return;
}
*out_curve_ids = s->tlsext_ellipticcurvelist;
*out_curve_ids_len = s->tlsext_ellipticcurvelist_length;
if (!*out_curve_ids) {
*out_curve_ids = eccurves_default;
*out_curve_ids_len = sizeof(eccurves_default) / sizeof(eccurves_default[0]);
}
}
int tls1_check_curve(SSL *s, CBS *cbs, uint16_t *out_curve_id) {
uint8_t curve_type;
uint16_t curve_id;
const uint16_t *curves;
size_t curves_len, i;
/* Only support named curves. */
if (!CBS_get_u8(cbs, &curve_type) ||
curve_type != NAMED_CURVE_TYPE ||
!CBS_get_u16(cbs, &curve_id)) {
return 0;
}
tls1_get_curvelist(s, 0, &curves, &curves_len);
for (i = 0; i < curves_len; i++) {
if (curve_id == curves[i]) {
*out_curve_id = curve_id;
return 1;
}
}
return 0;
}
int tls1_get_shared_curve(SSL *s) {
const uint16_t *pref, *supp;
size_t preflen, supplen, i, j;
/* Can't do anything on client side */
if (s->server == 0) {
return NID_undef;
}
/* Return first preference shared curve */
tls1_get_curvelist(s, !!(s->options & SSL_OP_CIPHER_SERVER_PREFERENCE), &supp,
&supplen);
tls1_get_curvelist(s, !(s->options & SSL_OP_CIPHER_SERVER_PREFERENCE), &pref,
&preflen);
for (i = 0; i < preflen; i++) {
for (j = 0; j < supplen; j++) {
if (pref[i] == supp[j]) {
return tls1_ec_curve_id2nid(pref[i]);
}
}
}
return NID_undef;
}
/* NOTE: tls1_ec_curve_id2nid and tls1_set_curves assume that
*
* (a) 0 is not a valid curve ID.
*
* (b) The largest curve ID is 31.
*
* Those implementations must be revised before adding support for curve IDs
* that break these assumptions. */
OPENSSL_COMPILE_ASSERT((sizeof(nid_list) / sizeof(nid_list[0])) < 32,
small_curve_ids);
int tls1_set_curves(uint16_t **out_curve_ids, size_t *out_curve_ids_len,
const int *curves, size_t ncurves) {
uint16_t *curve_ids;
size_t i;
/* Bitmap of curves included to detect duplicates: only works
* while curve ids < 32. */
uint32_t dup_list = 0;
curve_ids = (uint16_t *)OPENSSL_malloc(ncurves * sizeof(uint16_t));
if (curve_ids == NULL) {
return 0;
}
for (i = 0; i < ncurves; i++) {
uint32_t idmask;
uint16_t id;
id = tls1_ec_nid2curve_id(curves[i]);
idmask = ((uint32_t)1) << id;
if (!id || (dup_list & idmask)) {
OPENSSL_free(curve_ids);
return 0;
}
dup_list |= idmask;
curve_ids[i] = id;
}
if (*out_curve_ids) {
OPENSSL_free(*out_curve_ids);
}
*out_curve_ids = curve_ids;
*out_curve_ids_len = ncurves;
return 1;
}
/* tls1_curve_params_from_ec_key sets |*out_curve_id| and |*out_comp_id| to the
* TLS curve ID and point format, respectively, for |ec|. It returns one on
* success and zero on failure. */
static int tls1_curve_params_from_ec_key(uint16_t *out_curve_id,
uint8_t *out_comp_id, EC_KEY *ec) {
int nid;
uint16_t id;
const EC_GROUP *grp;
if (ec == NULL) {
return 0;
}
grp = EC_KEY_get0_group(ec);
if (grp == NULL) {
return 0;
}
/* Determine curve ID */
nid = EC_GROUP_get_curve_name(grp);
id = tls1_ec_nid2curve_id(nid);
if (!id) {
return 0;
}
/* Set the named curve ID. Arbitrary explicit curves are not supported. */
*out_curve_id = id;
if (out_comp_id) {
if (EC_KEY_get0_public_key(ec) == NULL) {
return 0;
}
if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_COMPRESSED) {
*out_comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
} else {
*out_comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
}
}
return 1;
}
/* tls1_check_point_format returns one if |comp_id| is consistent with the
* peer's point format preferences. */
static int tls1_check_point_format(SSL *s, uint8_t comp_id) {
uint8_t *p = s->s3->tmp.peer_ecpointformatlist;
size_t plen = s->s3->tmp.peer_ecpointformatlist_length;
size_t i;
/* If point formats extension present check it, otherwise everything is
* supported (see RFC4492). */
if (p == NULL) {
return 1;
}
for (i = 0; i < plen; i++) {
if (comp_id == p[i]) {
return 1;
}
}
return 0;
}
/* tls1_check_curve_id returns one if |curve_id| is consistent with both our
* and the peer's curve preferences. Note: if called as the client, only our
* preferences are checked; the peer (the server) does not send preferences. */
static int tls1_check_curve_id(SSL *s, uint16_t curve_id) {
const uint16_t *curves;
size_t curves_len, i, j;
/* Check against our list, then the peer's list. */
for (j = 0; j <= 1; j++) {
tls1_get_curvelist(s, j, &curves, &curves_len);
for (i = 0; i < curves_len; i++) {
if (curves[i] == curve_id) {
break;
}
}
if (i == curves_len) {
return 0;
}
/* Servers do not present a preference list so, if we are a client, only
* check our list. */
if (!s->server) {
return 1;
}
}
return 1;
}
static void tls1_get_formatlist(SSL *s, const uint8_t **pformats,
size_t *pformatslen) {
/* If we have a custom point format list use it otherwise use default */
if (s->tlsext_ecpointformatlist) {
*pformats = s->tlsext_ecpointformatlist;
*pformatslen = s->tlsext_ecpointformatlist_length;
} else {
*pformats = ecformats_default;
*pformatslen = sizeof(ecformats_default);
}
}
int tls1_check_ec_cert(SSL *s, X509 *x) {
int ret = 0;
EVP_PKEY *pkey = X509_get_pubkey(x);
uint16_t curve_id;
uint8_t comp_id;
if (!pkey ||
pkey->type != EVP_PKEY_EC ||
!tls1_curve_params_from_ec_key(&curve_id, &comp_id, pkey->pkey.ec) ||
!tls1_check_curve_id(s, curve_id) ||
!tls1_check_point_format(s, comp_id)) {
goto done;
}
ret = 1;
done:
if (pkey) {
EVP_PKEY_free(pkey);
}
return ret;
}
int tls1_check_ec_tmp_key(SSL *s) {
uint16_t curve_id;
EC_KEY *ec = s->cert->ecdh_tmp;
if (s->cert->ecdh_tmp_auto) {
/* Need a shared curve */
return tls1_get_shared_curve(s) != NID_undef;
}
if (!ec) {
if (s->cert->ecdh_tmp_cb) {
return 1;
}
return 0;
}
return tls1_curve_params_from_ec_key(&curve_id, NULL, ec) &&
tls1_check_curve_id(s, curve_id);
}
/* List of supported signature algorithms and hashes. Should make this
* customisable at some point, for now include everything we support. */
#define tlsext_sigalg_rsa(md) md, TLSEXT_signature_rsa,
#define tlsext_sigalg_ecdsa(md) md, TLSEXT_signature_ecdsa,
#define tlsext_sigalg(md) tlsext_sigalg_rsa(md) tlsext_sigalg_ecdsa(md)
static const uint8_t tls12_sigalgs[] = {
tlsext_sigalg(TLSEXT_hash_sha512)
tlsext_sigalg(TLSEXT_hash_sha384)
tlsext_sigalg(TLSEXT_hash_sha256)
tlsext_sigalg(TLSEXT_hash_sha224)
tlsext_sigalg(TLSEXT_hash_sha1)
};
size_t tls12_get_psigalgs(SSL *s, const uint8_t **psigs) {
/* If server use client authentication sigalgs if not NULL */
if (s->server && s->cert->client_sigalgs) {
*psigs = s->cert->client_sigalgs;
return s->cert->client_sigalgslen;
} else if (s->cert->conf_sigalgs) {
*psigs = s->cert->conf_sigalgs;
return s->cert->conf_sigalgslen;
} else {
*psigs = tls12_sigalgs;
return sizeof(tls12_sigalgs);
}
}
/* tls12_check_peer_sigalg parses a SignatureAndHashAlgorithm out of |cbs|. It
* checks it is consistent with |s|'s sent supported signature algorithms and,
* if so, writes the relevant digest into |*out_md| and returns 1. Otherwise it
* returns 0 and writes an alert into |*out_alert|. */
int tls12_check_peer_sigalg(const EVP_MD **out_md, int *out_alert, SSL *s,
CBS *cbs, EVP_PKEY *pkey) {
const uint8_t *sent_sigs;
size_t sent_sigslen, i;
int sigalg = tls12_get_sigid(pkey);
uint8_t hash, signature;
/* Should never happen */
if (sigalg == -1) {
OPENSSL_PUT_ERROR(SSL, tls12_check_peer_sigalg, ERR_R_INTERNAL_ERROR);
*out_alert = SSL_AD_INTERNAL_ERROR;
return 0;
}
if (!CBS_get_u8(cbs, &hash) ||
!CBS_get_u8(cbs, &signature)) {
OPENSSL_PUT_ERROR(SSL, tls12_check_peer_sigalg, SSL_R_DECODE_ERROR);
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
/* Check key type is consistent with signature */
if (sigalg != signature) {
OPENSSL_PUT_ERROR(SSL, tls12_check_peer_sigalg, SSL_R_WRONG_SIGNATURE_TYPE);
*out_alert = SSL_AD_ILLEGAL_PARAMETER;
return 0;
}
if (pkey->type == EVP_PKEY_EC) {
uint16_t curve_id;
uint8_t comp_id;
/* Check compression and curve matches extensions */
if (!tls1_curve_params_from_ec_key(&curve_id, &comp_id, pkey->pkey.ec)) {
*out_alert = SSL_AD_INTERNAL_ERROR;
return 0;
}
if (s->server && (!tls1_check_curve_id(s, curve_id) ||
!tls1_check_point_format(s, comp_id))) {
OPENSSL_PUT_ERROR(SSL, tls12_check_peer_sigalg, SSL_R_WRONG_CURVE);
*out_alert = SSL_AD_ILLEGAL_PARAMETER;
return 0;
}
}
/* Check signature matches a type we sent */
sent_sigslen = tls12_get_psigalgs(s, &sent_sigs);
for (i = 0; i < sent_sigslen; i += 2, sent_sigs += 2) {
if (hash == sent_sigs[0] && signature == sent_sigs[1]) {
break;
}
}
/* Allow fallback to SHA-1. */
if (i == sent_sigslen && hash != TLSEXT_hash_sha1) {
OPENSSL_PUT_ERROR(SSL, tls12_check_peer_sigalg, SSL_R_WRONG_SIGNATURE_TYPE);
*out_alert = SSL_AD_ILLEGAL_PARAMETER;
return 0;
}
*out_md = tls12_get_hash(hash);
if (*out_md == NULL) {
OPENSSL_PUT_ERROR(SSL, tls12_check_peer_sigalg, SSL_R_UNKNOWN_DIGEST);
*out_alert = SSL_AD_ILLEGAL_PARAMETER;
return 0;
}
return 1;
}
/* Get a mask of disabled algorithms: an algorithm is disabled if it isn't
* supported or doesn't appear in supported signature algorithms. Unlike
* ssl_cipher_get_disabled this applies to a specific session and not global
* settings. */
void ssl_set_client_disabled(SSL *s) {
CERT *c = s->cert;
const uint8_t *sigalgs;
size_t i, sigalgslen;
int have_rsa = 0, have_ecdsa = 0;
c->mask_a = 0;
c->mask_k = 0;
/* Don't allow TLS 1.2 only ciphers if we don't suppport them */
if (!SSL_CLIENT_USE_TLS1_2_CIPHERS(s)) {
c->mask_ssl = SSL_TLSV1_2;
} else {
c->mask_ssl = 0;
}
/* Now go through all signature algorithms seeing if we support any for RSA,
* DSA, ECDSA. Do this for all versions not just TLS 1.2. */
sigalgslen = tls12_get_psigalgs(s, &sigalgs);
for (i = 0; i < sigalgslen; i += 2, sigalgs += 2) {
switch (sigalgs[1]) {
case TLSEXT_signature_rsa:
have_rsa = 1;
break;
case TLSEXT_signature_ecdsa:
have_ecdsa = 1;
break;
}
}
/* Disable auth if we don't include any appropriate signature algorithms. */
if (!have_rsa) {
c->mask_a |= SSL_aRSA;
}
if (!have_ecdsa) {
c->mask_a |= SSL_aECDSA;
}
/* with PSK there must be client callback set */
if (!s->psk_client_callback) {
c->mask_a |= SSL_aPSK;
c->mask_k |= SSL_kPSK;
}
}
/* header_len is the length of the ClientHello header written so far, used to
* compute padding. It does not include the record header. Pass 0 if no padding
* is to be done. */
uint8_t *ssl_add_clienthello_tlsext(SSL *s, uint8_t *buf, uint8_t *limit,
size_t header_len) {
int extdatalen = 0;
uint8_t *ret = buf;
uint8_t *orig = buf;
/* See if we support any ECC ciphersuites */
int using_ecc = 0;
if (s->version >= TLS1_VERSION || SSL_IS_DTLS(s)) {
size_t i;
unsigned long alg_k, alg_a;
STACK_OF(SSL_CIPHER) *cipher_stack = SSL_get_ciphers(s);
for (i = 0; i < sk_SSL_CIPHER_num(cipher_stack); i++) {
const SSL_CIPHER *c = sk_SSL_CIPHER_value(cipher_stack, i);
alg_k = c->algorithm_mkey;
alg_a = c->algorithm_auth;
if ((alg_k & SSL_kEECDH) || (alg_a & SSL_aECDSA)) {
using_ecc = 1;
break;
}
}
}
/* don't add extensions for SSLv3 unless doing secure renegotiation */
if (s->client_version == SSL3_VERSION && !s->s3->send_connection_binding) {
return orig;
}
ret += 2;
if (ret >= limit) {
return NULL; /* should never occur. */
}
if (s->tlsext_hostname != NULL) {
/* Add TLS extension servername to the Client Hello message */
unsigned long size_str;
long lenmax;
/* check for enough space.
4 for the servername type and entension length
2 for servernamelist length
1 for the hostname type
2 for hostname length
+ hostname length */
lenmax = limit - ret - 9;
size_str = strlen(s->tlsext_hostname);
if (lenmax < 0 || size_str > (unsigned long)lenmax) {
return NULL;
}
/* extension type and length */
s2n(TLSEXT_TYPE_server_name, ret);
s2n(size_str + 5, ret);
/* length of servername list */
s2n(size_str + 3, ret);
/* hostname type, length and hostname */
*(ret++) = (uint8_t)TLSEXT_NAMETYPE_host_name;
s2n(size_str, ret);
memcpy(ret, s->tlsext_hostname, size_str);
ret += size_str;
}
/* Add RI if renegotiating */
if (s->renegotiate) {
int el;
if (!ssl_add_clienthello_renegotiate_ext(s, 0, &el, 0)) {
OPENSSL_PUT_ERROR(SSL, ssl_add_clienthello_tlsext, ERR_R_INTERNAL_ERROR);
return NULL;
}
if ((limit - ret - 4 - el) < 0) {
return NULL;
}
s2n(TLSEXT_TYPE_renegotiate, ret);
s2n(el, ret);
if (!ssl_add_clienthello_renegotiate_ext(s, ret, &el, el)) {
OPENSSL_PUT_ERROR(SSL, ssl_add_clienthello_tlsext, ERR_R_INTERNAL_ERROR);
return NULL;
}
ret += el;
}
/* Add extended master secret. */
if (s->version != SSL3_VERSION) {
if (limit - ret - 4 < 0) {
return NULL;
}
s2n(TLSEXT_TYPE_extended_master_secret, ret);
s2n(0, ret);
}
if (!(SSL_get_options(s) & SSL_OP_NO_TICKET)) {
int ticklen = 0;
if (!s->new_session && s->session && s->session->tlsext_tick) {
ticklen = s->session->tlsext_ticklen;
}
/* Check for enough room 2 for extension type, 2 for len rest for
* ticket. */
if ((long)(limit - ret - 4 - ticklen) < 0) {
return NULL;
}
s2n(TLSEXT_TYPE_session_ticket, ret);
s2n(ticklen, ret);
if (ticklen) {
memcpy(ret, s->session->tlsext_tick, ticklen);
ret += ticklen;
}
}
if (SSL_CLIENT_USE_TLS1_2_CIPHERS(s)) {
size_t salglen;
const uint8_t *salg;
salglen = tls12_get_psigalgs(s, &salg);
if ((size_t)(limit - ret) < salglen + 6) {
return NULL;
}
s2n(TLSEXT_TYPE_signature_algorithms, ret);
s2n(salglen + 2, ret);
s2n(salglen, ret);
memcpy(ret, salg, salglen);
ret += salglen;
}
if (s->ocsp_stapling_enabled) {
/* The status_request extension is excessively extensible at every layer.
* On the client, only support requesting OCSP responses with an empty
* responder_id_list and no extensions. */
if (limit - ret - 4 - 1 - 2 - 2 < 0) {
return NULL;
}
s2n(TLSEXT_TYPE_status_request, ret);
s2n(1 + 2 + 2, ret);
/* status_type */
*(ret++) = TLSEXT_STATUSTYPE_ocsp;
/* responder_id_list - empty */
s2n(0, ret);
/* request_extensions - empty */
s2n(0, ret);
}
if (s->ctx->next_proto_select_cb && !s->s3->tmp.finish_md_len) {
/* The client advertises an emtpy extension to indicate its support for
* Next Protocol Negotiation */
if (limit - ret - 4 < 0) {
return NULL;
}
s2n(TLSEXT_TYPE_next_proto_neg, ret);
s2n(0, ret);
}
if (s->signed_cert_timestamps_enabled && !s->s3->tmp.finish_md_len) {
/* The client advertises an empty extension to indicate its support for
* certificate timestamps. */
if (limit - ret - 4 < 0) {
return NULL;
}
s2n(TLSEXT_TYPE_certificate_timestamp, ret);
s2n(0, ret);
}
if (s->alpn_client_proto_list && !s->s3->tmp.finish_md_len) {
if ((size_t)(limit - ret) < 6 + s->alpn_client_proto_list_len) {
return NULL;
}
s2n(TLSEXT_TYPE_application_layer_protocol_negotiation, ret);
s2n(2 + s->alpn_client_proto_list_len, ret);
s2n(s->alpn_client_proto_list_len, ret);
memcpy(ret, s->alpn_client_proto_list, s->alpn_client_proto_list_len);
ret += s->alpn_client_proto_list_len;
}
if (s->tlsext_channel_id_enabled) {
/* The client advertises an emtpy extension to indicate its support for
* Channel ID. */
if (limit - ret - 4 < 0) {
return NULL;
}
if (s->ctx->tlsext_channel_id_enabled_new) {
s2n(TLSEXT_TYPE_channel_id_new, ret);
} else {
s2n(TLSEXT_TYPE_channel_id, ret);
}
s2n(0, ret);
}
if (SSL_get_srtp_profiles(s)) {
int el;
ssl_add_clienthello_use_srtp_ext(s, 0, &el, 0);
if ((limit - ret - 4 - el) < 0) {
return NULL;
}
s2n(TLSEXT_TYPE_use_srtp, ret);
s2n(el, ret);
if (!ssl_add_clienthello_use_srtp_ext(s, ret, &el, el)) {
OPENSSL_PUT_ERROR(SSL, ssl_add_clienthello_tlsext, ERR_R_INTERNAL_ERROR);
return NULL;
}
ret += el;
}
if (using_ecc) {
/* Add TLS extension ECPointFormats to the ClientHello message */
long lenmax;
const uint8_t *formats;
const uint16_t *curves;
size_t formats_len, curves_len, i;
tls1_get_formatlist(s, &formats, &formats_len);
lenmax = limit - ret - 5;
if (lenmax < 0) {
return NULL;
}
if (formats_len > (size_t)lenmax) {
return NULL;
}
if (formats_len > 255) {
OPENSSL_PUT_ERROR(SSL, ssl_add_clienthello_tlsext, ERR_R_INTERNAL_ERROR);
return NULL;
}
s2n(TLSEXT_TYPE_ec_point_formats, ret);
s2n(formats_len + 1, ret);
*(ret++) = (uint8_t)formats_len;
memcpy(ret, formats, formats_len);
ret += formats_len;
/* Add TLS extension EllipticCurves to the ClientHello message */
tls1_get_curvelist(s, 0, &curves, &curves_len);
lenmax = limit - ret - 6;
if (lenmax < 0) {
return NULL;
}
if (curves_len * 2 > (size_t)lenmax) {
return NULL;
}
if (curves_len * 2 > 65532) {
OPENSSL_PUT_ERROR(SSL, ssl_add_clienthello_tlsext, ERR_R_INTERNAL_ERROR);
return NULL;
}
s2n(TLSEXT_TYPE_elliptic_curves, ret);
s2n((curves_len * 2) + 2, ret);
s2n(curves_len * 2, ret);
for (i = 0; i < curves_len; i++) {
s2n(curves[i], ret);
}
}
if (header_len > 0) {
size_t clienthello_minsize = 0;
header_len += ret - orig;
if (header_len > 0xff && header_len < 0x200) {
/* Add padding to workaround bugs in F5 terminators. See
* https://tools.ietf.org/html/draft-agl-tls-padding-03
*
* NB: because this code works out the length of all existing extensions
* it MUST always appear last. */
clienthello_minsize = 0x200;
}
if (s->fastradio_padding) {
/* Pad the ClientHello record to 1024 bytes to fast forward the radio
* into DCH (high data rate) state in 3G networks. Note that when
* fastradio_padding is enabled, even if the header_len is less than 255
* bytes, the padding will be applied regardless. This is slightly
* different from the TLS padding extension suggested in
* https://tools.ietf.org/html/draft-agl-tls-padding-03 */
clienthello_minsize = 0x400;
}
if (header_len < clienthello_minsize) {
size_t padding_len = clienthello_minsize - header_len;
/* Extensions take at least four bytes to encode. Always include least
* one byte of data if including the extension. WebSphere Application
* Server 7.0 is intolerant to the last extension being zero-length. */
if (padding_len >= 4 + 1) {
padding_len -= 4;
} else {
padding_len = 1;
}
if (limit - ret - 4 - (long)padding_len < 0) {
return NULL;
}
s2n(TLSEXT_TYPE_padding, ret);
s2n(padding_len, ret);
memset(ret, 0, padding_len);
ret += padding_len;
}
}
extdatalen = ret - orig - 2;
if (extdatalen == 0) {
return orig;
}
s2n(extdatalen, orig);
return ret;
}
uint8_t *ssl_add_serverhello_tlsext(SSL *s, uint8_t *buf, uint8_t *limit) {
int extdatalen = 0;
uint8_t *orig = buf;
uint8_t *ret = buf;
int next_proto_neg_seen;
unsigned long alg_k = s->s3->tmp.new_cipher->algorithm_mkey;
unsigned long alg_a = s->s3->tmp.new_cipher->algorithm_auth;
int using_ecc = (alg_k & SSL_kEECDH) || (alg_a & SSL_aECDSA);
using_ecc = using_ecc && (s->s3->tmp.peer_ecpointformatlist != NULL);
/* don't add extensions for SSLv3, unless doing secure renegotiation */
if (s->version == SSL3_VERSION && !s->s3->send_connection_binding) {
return orig;
}
ret += 2;
if (ret >= limit) {
return NULL; /* should never happen. */
}
if (!s->hit && s->should_ack_sni && s->session->tlsext_hostname != NULL) {
if ((long)(limit - ret - 4) < 0) {
return NULL;
}
s2n(TLSEXT_TYPE_server_name, ret);
s2n(0, ret);
}
if (s->s3->send_connection_binding) {
int el;
if (!ssl_add_serverhello_renegotiate_ext(s, 0, &el, 0)) {
OPENSSL_PUT_ERROR(SSL, ssl_add_serverhello_tlsext, ERR_R_INTERNAL_ERROR);
return NULL;
}
if ((limit - ret - 4 - el) < 0) {
return NULL;
}
s2n(TLSEXT_TYPE_renegotiate, ret);
s2n(el, ret);
if (!ssl_add_serverhello_renegotiate_ext(s, ret, &el, el)) {
OPENSSL_PUT_ERROR(SSL, ssl_add_serverhello_tlsext, ERR_R_INTERNAL_ERROR);
return NULL;
}
ret += el;
}
if (s->s3->tmp.extended_master_secret) {
if ((long)(limit - ret - 4) < 0) {
return NULL;
}
s2n(TLSEXT_TYPE_extended_master_secret, ret);
s2n(0, ret);
}
if (using_ecc) {
const uint8_t *plist;
size_t plistlen;
/* Add TLS extension ECPointFormats to the ServerHello message */
long lenmax;
tls1_get_formatlist(s, &plist, &plistlen);
lenmax = limit - ret - 5;
if (lenmax < 0) {
return NULL;
}
if (plistlen > (size_t)lenmax) {
return NULL;
}
if (plistlen > 255) {
OPENSSL_PUT_ERROR(SSL, ssl_add_serverhello_tlsext, ERR_R_INTERNAL_ERROR);
return NULL;
}
s2n(TLSEXT_TYPE_ec_point_formats, ret);
s2n(plistlen + 1, ret);
*(ret++) = (uint8_t)plistlen;
memcpy(ret, plist, plistlen);
ret += plistlen;
}
/* Currently the server should not respond with a SupportedCurves extension */
if (s->tlsext_ticket_expected && !(SSL_get_options(s) & SSL_OP_NO_TICKET)) {
if ((long)(limit - ret - 4) < 0) {
return NULL;
}
s2n(TLSEXT_TYPE_session_ticket, ret);
s2n(0, ret);
}
if (s->s3->tmp.certificate_status_expected) {
if ((long)(limit - ret - 4) < 0) {
return NULL;
}
s2n(TLSEXT_TYPE_status_request, ret);
s2n(0, ret);
}
if (s->srtp_profile) {
int el;
ssl_add_serverhello_use_srtp_ext(s, 0, &el, 0);
if ((limit - ret - 4 - el) < 0) {
return NULL;
}
s2n(TLSEXT_TYPE_use_srtp, ret);
s2n(el, ret);
if (!ssl_add_serverhello_use_srtp_ext(s, ret, &el, el)) {
OPENSSL_PUT_ERROR(SSL, ssl_add_serverhello_tlsext, ERR_R_INTERNAL_ERROR);
return NULL;
}
ret += el;
}
next_proto_neg_seen = s->s3->next_proto_neg_seen;
s->s3->next_proto_neg_seen = 0;
if (next_proto_neg_seen && s->ctx->next_protos_advertised_cb) {
const uint8_t *npa;
unsigned int npalen;
int r;
r = s->ctx->next_protos_advertised_cb(
s, &npa, &npalen, s->ctx->next_protos_advertised_cb_arg);
if (r == SSL_TLSEXT_ERR_OK) {
if ((long)(limit - ret - 4 - npalen) < 0) {
return NULL;
}
s2n(TLSEXT_TYPE_next_proto_neg, ret);
s2n(npalen, ret);
memcpy(ret, npa, npalen);
ret += npalen;
s->s3->next_proto_neg_seen = 1;
}
}
if (s->s3->alpn_selected) {
const uint8_t *selected = s->s3->alpn_selected;
size_t len = s->s3->alpn_selected_len;
if ((long)(limit - ret - 4 - 2 - 1 - len) < 0) {
return NULL;
}
s2n(TLSEXT_TYPE_application_layer_protocol_negotiation, ret);
s2n(3 + len, ret);
s2n(1 + len, ret);
*ret++ = len;
memcpy(ret, selected, len);
ret += len;
}
/* If the client advertised support for Channel ID, and we have it
* enabled, then we want to echo it back. */
if (s->s3->tlsext_channel_id_valid) {
if (limit - ret - 4 < 0) {
return NULL;
}
if (s->s3->tlsext_channel_id_new) {
s2n(TLSEXT_TYPE_channel_id_new, ret);
} else {
s2n(TLSEXT_TYPE_channel_id, ret);
}
s2n(0, ret);
}
extdatalen = ret - orig - 2;
if (extdatalen == 0) {
return orig;
}
s2n(extdatalen, orig);
return ret;
}
/* tls1_alpn_handle_client_hello is called to process the ALPN extension in a
* ClientHello.
* cbs: the contents of the extension, not including the type and length.
* out_alert: a pointer to the alert value to send in the event of a zero
* return.
*
* returns: 1 on success. */
static int tls1_alpn_handle_client_hello(SSL *s, CBS *cbs, int *out_alert) {
CBS protocol_name_list, protocol_name_list_copy;
const uint8_t *selected;
uint8_t selected_len;
int r;
if (s->ctx->alpn_select_cb == NULL) {
return 1;
}
if (!CBS_get_u16_length_prefixed(cbs, &protocol_name_list) ||
CBS_len(cbs) != 0 || CBS_len(&protocol_name_list) < 2) {
goto parse_error;
}
/* Validate the protocol list. */
protocol_name_list_copy = protocol_name_list;
while (CBS_len(&protocol_name_list_copy) > 0) {
CBS protocol_name;
if (!CBS_get_u8_length_prefixed(&protocol_name_list_copy, &protocol_name)) {
goto parse_error;
}
}
r = s->ctx->alpn_select_cb(
s, &selected, &selected_len, CBS_data(&protocol_name_list),
CBS_len(&protocol_name_list), s->ctx->alpn_select_cb_arg);
if (r == SSL_TLSEXT_ERR_OK) {
if (s->s3->alpn_selected) {
OPENSSL_free(s->s3->alpn_selected);
}
s->s3->alpn_selected = BUF_memdup(selected, selected_len);
if (!s->s3->alpn_selected) {
*out_alert = SSL_AD_INTERNAL_ERROR;
return 0;
}
s->s3->alpn_selected_len = selected_len;
}
return 1;
parse_error:
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
static int ssl_scan_clienthello_tlsext(SSL *s, CBS *cbs, int *out_alert) {
int renegotiate_seen = 0;
CBS extensions;
s->should_ack_sni = 0;
s->s3->next_proto_neg_seen = 0;
s->s3->tmp.certificate_status_expected = 0;
s->s3->tmp.extended_master_secret = 0;
if (s->s3->alpn_selected) {
OPENSSL_free(s->s3->alpn_selected);
s->s3->alpn_selected = NULL;
}
/* Clear any signature algorithms extension received */
if (s->cert->peer_sigalgs) {
OPENSSL_free(s->cert->peer_sigalgs);
s->cert->peer_sigalgs = NULL;
}
/* Clear any shared signature algorithms */
if (s->cert->shared_sigalgs) {
OPENSSL_free(s->cert->shared_sigalgs);
s->cert->shared_sigalgs = NULL;
}
/* Clear ECC extensions */
if (s->s3->tmp.peer_ecpointformatlist != 0) {
OPENSSL_free(s->s3->tmp.peer_ecpointformatlist);
s->s3->tmp.peer_ecpointformatlist = NULL;
s->s3->tmp.peer_ecpointformatlist_length = 0;
}
if (s->s3->tmp.peer_ellipticcurvelist != 0) {
OPENSSL_free(s->s3->tmp.peer_ellipticcurvelist);
s->s3->tmp.peer_ellipticcurvelist = NULL;
s->s3->tmp.peer_ellipticcurvelist_length = 0;
}
/* There may be no extensions. */
if (CBS_len(cbs) == 0) {
goto ri_check;
}
/* Decode the extensions block and check it is valid. */
if (!CBS_get_u16_length_prefixed(cbs, &extensions) ||
!tls1_check_duplicate_extensions(&extensions)) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
while (CBS_len(&extensions) != 0) {
uint16_t type;
CBS extension;
/* Decode the next extension. */
if (!CBS_get_u16(&extensions, &type) ||
!CBS_get_u16_length_prefixed(&extensions, &extension)) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
if (s->tlsext_debug_cb) {
s->tlsext_debug_cb(s, 0, type, (uint8_t *)CBS_data(&extension),
CBS_len(&extension), s->tlsext_debug_arg);
}
/* The servername extension is treated as follows:
- Only the hostname type is supported with a maximum length of 255.
- The servername is rejected if too long or if it contains zeros, in
which case an fatal alert is generated.
- The servername field is maintained together with the session cache.
- When a session is resumed, the servername call back invoked in order
to allow the application to position itself to the right context.
- The servername is acknowledged if it is new for a session or when
it is identical to a previously used for the same session.
Applications can control the behaviour. They can at any time
set a 'desirable' servername for a new SSL object. This can be the
case for example with HTTPS when a Host: header field is received and
a renegotiation is requested. In this case, a possible servername
presented in the new client hello is only acknowledged if it matches
the value of the Host: field.
- Applications must use SSL_OP_NO_SESSION_RESUMPTION_ON_RENEGOTIATION
if they provide for changing an explicit servername context for the
session,
i.e. when the session has been established with a servername extension.
- On session reconnect, the servername extension may be absent. */
if (type == TLSEXT_TYPE_server_name) {
CBS server_name_list;
char have_seen_host_name = 0;
if (!CBS_get_u16_length_prefixed(&extension, &server_name_list) ||
CBS_len(&server_name_list) < 1 || CBS_len(&extension) != 0) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
/* Decode each ServerName in the extension. */
while (CBS_len(&server_name_list) > 0) {
uint8_t name_type;
CBS host_name;
/* Decode the NameType. */
if (!CBS_get_u8(&server_name_list, &name_type)) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
/* Only host_name is supported. */
if (name_type != TLSEXT_NAMETYPE_host_name) {
continue;
}
if (have_seen_host_name) {
/* The ServerNameList MUST NOT contain more than one name of the same
* name_type. */
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
have_seen_host_name = 1;
if (!CBS_get_u16_length_prefixed(&server_name_list, &host_name) ||
CBS_len(&host_name) < 1) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
if (CBS_len(&host_name) > TLSEXT_MAXLEN_host_name ||
CBS_contains_zero_byte(&host_name)) {
*out_alert = SSL_AD_UNRECOGNIZED_NAME;
return 0;
}
if (!s->hit) {
assert(s->session->tlsext_hostname == NULL);
if (s->session->tlsext_hostname) {
/* This should be impossible. */
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
/* Copy the hostname as a string. */
if (!CBS_strdup(&host_name, &s->session->tlsext_hostname)) {
*out_alert = SSL_AD_INTERNAL_ERROR;
return 0;
}
s->should_ack_sni = 1;
}
}
} else if (type == TLSEXT_TYPE_ec_point_formats) {
CBS ec_point_format_list;
if (!CBS_get_u8_length_prefixed(&extension, &ec_point_format_list) ||
CBS_len(&extension) != 0) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
if (!CBS_stow(&ec_point_format_list, &s->s3->tmp.peer_ecpointformatlist,
&s->s3->tmp.peer_ecpointformatlist_length)) {
*out_alert = SSL_AD_INTERNAL_ERROR;
return 0;
}
} else if (type == TLSEXT_TYPE_elliptic_curves) {
CBS elliptic_curve_list;
size_t i, num_curves;
if (!CBS_get_u16_length_prefixed(&extension, &elliptic_curve_list) ||
CBS_len(&elliptic_curve_list) == 0 ||
(CBS_len(&elliptic_curve_list) & 1) != 0 ||
CBS_len(&extension) != 0) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
if (s->s3->tmp.peer_ellipticcurvelist) {
OPENSSL_free(s->s3->tmp.peer_ellipticcurvelist);
s->s3->tmp.peer_ellipticcurvelist_length = 0;
}
s->s3->tmp.peer_ellipticcurvelist =
(uint16_t *)OPENSSL_malloc(CBS_len(&elliptic_curve_list));
if (s->s3->tmp.peer_ellipticcurvelist == NULL) {
*out_alert = SSL_AD_INTERNAL_ERROR;
return 0;
}
num_curves = CBS_len(&elliptic_curve_list) / 2;
for (i = 0; i < num_curves; i++) {
if (!CBS_get_u16(&elliptic_curve_list,
&s->s3->tmp.peer_ellipticcurvelist[i])) {
*out_alert = SSL_AD_INTERNAL_ERROR;
return 0;
}
}
if (CBS_len(&elliptic_curve_list) != 0) {
*out_alert = SSL_AD_INTERNAL_ERROR;
return 0;
}
s->s3->tmp.peer_ellipticcurvelist_length = num_curves;
} else if (type == TLSEXT_TYPE_renegotiate) {
if (!ssl_parse_clienthello_renegotiate_ext(s, &extension, out_alert)) {
return 0;
}
renegotiate_seen = 1;
} else if (type == TLSEXT_TYPE_signature_algorithms) {
CBS supported_signature_algorithms;
if (!CBS_get_u16_length_prefixed(&extension,
&supported_signature_algorithms) ||
CBS_len(&extension) != 0) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
/* Ensure the signature algorithms are non-empty. It contains a list of
* SignatureAndHashAlgorithms which are two bytes each. */
if (CBS_len(&supported_signature_algorithms) == 0 ||
(CBS_len(&supported_signature_algorithms) % 2) != 0) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
if (!tls1_process_sigalgs(s, &supported_signature_algorithms)) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
/* If sigalgs received and no shared algorithms fatal error. */
if (s->cert->peer_sigalgs && !s->cert->shared_sigalgs) {
OPENSSL_PUT_ERROR(SSL, ssl_add_serverhello_tlsext,
SSL_R_NO_SHARED_SIGATURE_ALGORITHMS);
*out_alert = SSL_AD_ILLEGAL_PARAMETER;
return 0;
}
} else if (type == TLSEXT_TYPE_next_proto_neg &&
s->s3->tmp.finish_md_len == 0 && s->s3->alpn_selected == NULL) {
/* The extension must be empty. */
if (CBS_len(&extension) != 0) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
/* We shouldn't accept this extension on a renegotiation.
*
* s->new_session will be set on renegotiation, but we probably shouldn't
* rely that it couldn't be set on the initial renegotation too in
* certain cases (when there's some other reason to disallow resuming an
* earlier session -- the current code won't be doing anything like that,
* but this might change).
* A valid sign that there's been a previous handshake in this connection
* is if s->s3->tmp.finish_md_len > 0. (We are talking about a check
* that will happen in the Hello protocol round, well before a new
* Finished message could have been computed.) */
s->s3->next_proto_neg_seen = 1;
} else if (type == TLSEXT_TYPE_application_layer_protocol_negotiation &&
s->ctx->alpn_select_cb && s->s3->tmp.finish_md_len == 0) {
if (!tls1_alpn_handle_client_hello(s, &extension, out_alert)) {
return 0;
}
/* ALPN takes precedence over NPN. */
s->s3->next_proto_neg_seen = 0;
} else if (type == TLSEXT_TYPE_channel_id && s->tlsext_channel_id_enabled) {
/* The extension must be empty. */
if (CBS_len(&extension) != 0) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
s->s3->tlsext_channel_id_valid = 1;
} else if (type == TLSEXT_TYPE_channel_id_new &&
s->tlsext_channel_id_enabled) {
/* The extension must be empty. */
if (CBS_len(&extension) != 0) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
s->s3->tlsext_channel_id_valid = 1;
s->s3->tlsext_channel_id_new = 1;
} else if (type == TLSEXT_TYPE_use_srtp) {
if (!ssl_parse_clienthello_use_srtp_ext(s, &extension, out_alert)) {
return 0;
}
} else if (type == TLSEXT_TYPE_extended_master_secret &&
s->version != SSL3_VERSION) {
if (CBS_len(&extension) != 0) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
s->s3->tmp.extended_master_secret = 1;
}
}
ri_check:
/* Need RI if renegotiating */
if (!renegotiate_seen && s->renegotiate &&
!(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) {
*out_alert = SSL_AD_HANDSHAKE_FAILURE;
OPENSSL_PUT_ERROR(SSL, ssl_scan_clienthello_tlsext,
SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED);
return 0;
}
return 1;
}
int ssl_parse_clienthello_tlsext(SSL *s, CBS *cbs) {
int alert = -1;
if (ssl_scan_clienthello_tlsext(s, cbs, &alert) <= 0) {
ssl3_send_alert(s, SSL3_AL_FATAL, alert);
return 0;
}
if (ssl_check_clienthello_tlsext(s) <= 0) {
OPENSSL_PUT_ERROR(SSL, ssl_parse_clienthello_tlsext,
SSL_R_CLIENTHELLO_TLSEXT);
return 0;
}
return 1;
}
/* ssl_next_proto_validate validates a Next Protocol Negotiation block. No
* elements of zero length are allowed and the set of elements must exactly
* fill the length of the block. */
static char ssl_next_proto_validate(const CBS *cbs) {
CBS copy = *cbs;
while (CBS_len(&copy) != 0) {
CBS proto;
if (!CBS_get_u8_length_prefixed(&copy, &proto) || CBS_len(&proto) == 0) {
return 0;
}
}
return 1;
}
static int ssl_scan_serverhello_tlsext(SSL *s, CBS *cbs, int *out_alert) {
int tlsext_servername = 0;
int renegotiate_seen = 0;
CBS extensions;
/* TODO(davidben): Move all of these to some per-handshake state that gets
* systematically reset on a new handshake; perhaps allocate it fresh each
* time so it's not even kept around post-handshake. */
s->s3->next_proto_neg_seen = 0;
s->tlsext_ticket_expected = 0;
s->s3->tmp.certificate_status_expected = 0;
s->s3->tmp.extended_master_secret = 0;
if (s->s3->alpn_selected) {
OPENSSL_free(s->s3->alpn_selected);
s->s3->alpn_selected = NULL;
}
/* Clear ECC extensions */
if (s->s3->tmp.peer_ecpointformatlist != 0) {
OPENSSL_free(s->s3->tmp.peer_ecpointformatlist);
s->s3->tmp.peer_ecpointformatlist = NULL;
s->s3->tmp.peer_ecpointformatlist_length = 0;
}
/* There may be no extensions. */
if (CBS_len(cbs) == 0) {
goto ri_check;
}
/* Decode the extensions block and check it is valid. */
if (!CBS_get_u16_length_prefixed(cbs, &extensions) ||
!tls1_check_duplicate_extensions(&extensions)) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
while (CBS_len(&extensions) != 0) {
uint16_t type;
CBS extension;
/* Decode the next extension. */
if (!CBS_get_u16(&extensions, &type) ||
!CBS_get_u16_length_prefixed(&extensions, &extension)) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
if (s->tlsext_debug_cb) {
s->tlsext_debug_cb(s, 1, type, (uint8_t *)CBS_data(&extension),
CBS_len(&extension), s->tlsext_debug_arg);
}
if (type == TLSEXT_TYPE_server_name) {
/* The extension must be empty. */
if (CBS_len(&extension) != 0) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
/* We must have sent it in ClientHello. */
if (s->tlsext_hostname == NULL) {
*out_alert = SSL_AD_UNSUPPORTED_EXTENSION;
return 0;
}
tlsext_servername = 1;
} else if (type == TLSEXT_TYPE_ec_point_formats) {
CBS ec_point_format_list;
if (!CBS_get_u8_length_prefixed(&extension, &ec_point_format_list) ||
CBS_len(&extension) != 0) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
if (!CBS_stow(&ec_point_format_list, &s->s3->tmp.peer_ecpointformatlist,
&s->s3->tmp.peer_ecpointformatlist_length)) {
*out_alert = SSL_AD_INTERNAL_ERROR;
return 0;
}
} else if (type == TLSEXT_TYPE_session_ticket) {
if ((SSL_get_options(s) & SSL_OP_NO_TICKET) || CBS_len(&extension) > 0) {
*out_alert = SSL_AD_UNSUPPORTED_EXTENSION;
return 0;
}
s->tlsext_ticket_expected = 1;
} else if (type == TLSEXT_TYPE_status_request) {
/* The extension MUST be empty and may only sent if we've requested a
* status request message. */
if (CBS_len(&extension) != 0) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
if (!s->ocsp_stapling_enabled) {
*out_alert = SSL_AD_UNSUPPORTED_EXTENSION;
return 0;
}
/* Set a flag to expect a CertificateStatus message */
s->s3->tmp.certificate_status_expected = 1;
} else if (type == TLSEXT_TYPE_next_proto_neg &&
s->s3->tmp.finish_md_len == 0) {
uint8_t *selected;
uint8_t selected_len;
/* We must have requested it. */
if (s->ctx->next_proto_select_cb == NULL) {
*out_alert = SSL_AD_UNSUPPORTED_EXTENSION;
return 0;
}
/* The data must be valid. */
if (!ssl_next_proto_validate(&extension)) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
if (s->ctx->next_proto_select_cb(
s, &selected, &selected_len, CBS_data(&extension),
CBS_len(&extension),
s->ctx->next_proto_select_cb_arg) != SSL_TLSEXT_ERR_OK) {
*out_alert = SSL_AD_INTERNAL_ERROR;
return 0;
}
s->next_proto_negotiated = BUF_memdup(selected, selected_len);
if (s->next_proto_negotiated == NULL) {
*out_alert = SSL_AD_INTERNAL_ERROR;
return 0;
}
s->next_proto_negotiated_len = selected_len;
s->s3->next_proto_neg_seen = 1;
} else if (type == TLSEXT_TYPE_application_layer_protocol_negotiation) {
CBS protocol_name_list, protocol_name;
/* We must have requested it. */
if (s->alpn_client_proto_list == NULL) {
*out_alert = SSL_AD_UNSUPPORTED_EXTENSION;
return 0;
}
/* The extension data consists of a ProtocolNameList which must have
* exactly one ProtocolName. Each of these is length-prefixed. */
if (!CBS_get_u16_length_prefixed(&extension, &protocol_name_list) ||
CBS_len(&extension) != 0 ||
!CBS_get_u8_length_prefixed(&protocol_name_list, &protocol_name) ||
CBS_len(&protocol_name_list) != 0) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
if (!CBS_stow(&protocol_name, &s->s3->alpn_selected,
&s->s3->alpn_selected_len)) {
*out_alert = SSL_AD_INTERNAL_ERROR;
return 0;
}
} else if (type == TLSEXT_TYPE_channel_id) {
if (CBS_len(&extension) != 0) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
s->s3->tlsext_channel_id_valid = 1;
} else if (type == TLSEXT_TYPE_channel_id_new) {
if (CBS_len(&extension) != 0) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
s->s3->tlsext_channel_id_valid = 1;
s->s3->tlsext_channel_id_new = 1;
} else if (type == TLSEXT_TYPE_certificate_timestamp) {
if (CBS_len(&extension) == 0) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
/* Session resumption uses the original session information. */
if (!s->hit &&
!CBS_stow(&extension, &s->session->tlsext_signed_cert_timestamp_list,
&s->session->tlsext_signed_cert_timestamp_list_length)) {
*out_alert = SSL_AD_INTERNAL_ERROR;
return 0;
}
} else if (type == TLSEXT_TYPE_renegotiate) {
if (!ssl_parse_serverhello_renegotiate_ext(s, &extension, out_alert)) {
return 0;
}
renegotiate_seen = 1;
} else if (type == TLSEXT_TYPE_use_srtp) {
if (!ssl_parse_serverhello_use_srtp_ext(s, &extension, out_alert)) {
return 0;
}
} else if (type == TLSEXT_TYPE_extended_master_secret) {
if (/* It is invalid for the server to select EMS and
SSLv3. */
s->version == SSL3_VERSION || CBS_len(&extension) != 0) {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
s->s3->tmp.extended_master_secret = 1;
}
}
if (!s->hit && tlsext_servername == 1 && s->tlsext_hostname) {
if (s->session->tlsext_hostname == NULL) {
s->session->tlsext_hostname = BUF_strdup(s->tlsext_hostname);
if (!s->session->tlsext_hostname) {
*out_alert = SSL_AD_UNRECOGNIZED_NAME;
return 0;
}
} else {
*out_alert = SSL_AD_DECODE_ERROR;
return 0;
}
}
ri_check:
/* Determine if we need to see RI. Strictly speaking if we want to avoid an
* attack we should *always* see RI even on initial server hello because the
* client doesn't see any renegotiation during an attack. However this would
* mean we could not connect to any server which doesn't support RI so for
* the immediate future tolerate RI absence on initial connect only. */
if (!renegotiate_seen && !(s->options & SSL_OP_LEGACY_SERVER_CONNECT) &&
!(s->options & SSL_OP_ALLOW_UNSAFE_LEGACY_RENEGOTIATION)) {
*out_alert = SSL_AD_HANDSHAKE_FAILURE;
OPENSSL_PUT_ERROR(SSL, ssl_scan_serverhello_tlsext,
SSL_R_UNSAFE_LEGACY_RENEGOTIATION_DISABLED);
return 0;
}
return 1;
}
int ssl_prepare_clienthello_tlsext(SSL *s) { return 1; }
int ssl_prepare_serverhello_tlsext(SSL *s) { return 1; }
static int ssl_check_clienthello_tlsext(SSL *s) {
int ret = SSL_TLSEXT_ERR_NOACK;
int al = SSL_AD_UNRECOGNIZED_NAME;
/* The handling of the ECPointFormats extension is done elsewhere, namely in
* ssl3_choose_cipher in s3_lib.c. */
if (s->ctx != NULL && s->ctx->tlsext_servername_callback != 0) {
ret = s->ctx->tlsext_servername_callback(s, &al,
s->ctx->tlsext_servername_arg);
} else if (s->initial_ctx != NULL &&
s->initial_ctx->tlsext_servername_callback != 0) {
ret = s->initial_ctx->tlsext_servername_callback(
s, &al, s->initial_ctx->tlsext_servername_arg);
}
switch (ret) {
case SSL_TLSEXT_ERR_ALERT_FATAL:
ssl3_send_alert(s, SSL3_AL_FATAL, al);
return -1;
case SSL_TLSEXT_ERR_ALERT_WARNING:
ssl3_send_alert(s, SSL3_AL_WARNING, al);
return 1;
case SSL_TLSEXT_ERR_NOACK:
s->should_ack_sni = 0;
return 1;
default:
return 1;
}
}
static int ssl_check_serverhello_tlsext(SSL *s) {
int ret = SSL_TLSEXT_ERR_NOACK;
int al = SSL_AD_UNRECOGNIZED_NAME;
/* If we are client and using an elliptic curve cryptography cipher suite,
* then if server returns an EC point formats lists extension it must contain
* uncompressed. */
unsigned long alg_k = s->s3->tmp.new_cipher->algorithm_mkey;
unsigned long alg_a = s->s3->tmp.new_cipher->algorithm_auth;
if (((alg_k & SSL_kEECDH) || (alg_a & SSL_aECDSA)) &&
!tls1_check_point_format(s, TLSEXT_ECPOINTFORMAT_uncompressed)) {
OPENSSL_PUT_ERROR(SSL, ssl_check_serverhello_tlsext,
SSL_R_TLS_INVALID_ECPOINTFORMAT_LIST);
return -1;
}
ret = SSL_TLSEXT_ERR_OK;
if (s->ctx != NULL && s->ctx->tlsext_servername_callback != 0) {
ret = s->ctx->tlsext_servername_callback(s, &al,
s->ctx->tlsext_servername_arg);
} else if (s->initial_ctx != NULL &&
s->initial_ctx->tlsext_servername_callback != 0) {
ret = s->initial_ctx->tlsext_servername_callback(
s, &al, s->initial_ctx->tlsext_servername_arg);
}
switch (ret) {
case SSL_TLSEXT_ERR_ALERT_FATAL:
ssl3_send_alert(s, SSL3_AL_FATAL, al);
return -1;
case SSL_TLSEXT_ERR_ALERT_WARNING:
ssl3_send_alert(s, SSL3_AL_WARNING, al);
return 1;
default:
return 1;
}
}
int ssl_parse_serverhello_tlsext(SSL *s, CBS *cbs) {
int alert = -1;
if (s->version < SSL3_VERSION) {
return 1;
}
if (ssl_scan_serverhello_tlsext(s, cbs, &alert) <= 0) {
ssl3_send_alert(s, SSL3_AL_FATAL, alert);
return 0;
}
if (ssl_check_serverhello_tlsext(s) <= 0) {
OPENSSL_PUT_ERROR(SSL, ssl_parse_serverhello_tlsext,
SSL_R_SERVERHELLO_TLSEXT);
return 0;
}
return 1;
}
/* Since the server cache lookup is done early on in the processing of the
* ClientHello, and other operations depend on the result, we need to handle
* any TLS session ticket extension at the same time.
*
* ctx: contains the early callback context, which is the result of a
* shallow parse of the ClientHello.
* ret: (output) on return, if a ticket was decrypted, then this is set to
* point to the resulting session.
*
* Returns:
* -1: fatal error, either from parsing or decrypting the ticket.
* 0: no ticket was found (or was ignored, based on settings).
* 1: a zero length extension was found, indicating that the client supports
* session tickets but doesn't currently have one to offer.
* 2: a ticket was offered but couldn't be decrypted because of a non-fatal
* error.
* 3: a ticket was successfully decrypted and *ret was set.
*
* Side effects:
* Sets s->tlsext_ticket_expected to 1 if the server will have to issue
* a new session ticket to the client because the client indicated support
* but the client either doesn't have a session ticket or we couldn't use
* the one it gave us, or if s->ctx->tlsext_ticket_key_cb asked to renew
* the client's ticket. Otherwise, s->tlsext_ticket_expected is set to 0.
*/
int tls1_process_ticket(SSL *s, const struct ssl_early_callback_ctx *ctx,
SSL_SESSION **ret) {
*ret = NULL;
s->tlsext_ticket_expected = 0;
const uint8_t *data;
size_t len;
int r;
/* If tickets disabled behave as if no ticket present to permit stateful
* resumption. */
if ((SSL_get_options(s) & SSL_OP_NO_TICKET) ||
(s->version <= SSL3_VERSION && !ctx->extensions) ||
!SSL_early_callback_ctx_extension_get(ctx, TLSEXT_TYPE_session_ticket,
&data, &len)) {
return 0;
}
if (len == 0) {
/* The client will accept a ticket but doesn't currently have one. */
s->tlsext_ticket_expected = 1;
return 1;
}
r = tls_decrypt_ticket(s, data, len, ctx->session_id, ctx->session_id_len,
ret);
switch (r) {
case 2: /* ticket couldn't be decrypted */
s->tlsext_ticket_expected = 1;
return 2;
case 3: /* ticket was decrypted */
return r;
case 4: /* ticket decrypted but need to renew */
s->tlsext_ticket_expected = 1;
return 3;
default: /* fatal error */
return -1;
}
}
/* tls_decrypt_ticket attempts to decrypt a session ticket.
*
* etick: points to the body of the session ticket extension.
* eticklen: the length of the session tickets extenion.
* sess_id: points at the session ID.
* sesslen: the length of the session ID.
* psess: (output) on return, if a ticket was decrypted, then this is set to
* point to the resulting session.
*
* Returns:
* -1: fatal error, either from parsing or decrypting the ticket.
* 2: the ticket couldn't be decrypted.
* 3: a ticket was successfully decrypted and *psess was set.
* 4: same as 3, but the ticket needs to be renewed. */
static int tls_decrypt_ticket(SSL *s, const uint8_t *etick, int eticklen,
const uint8_t *sess_id, int sesslen,
SSL_SESSION **psess) {
SSL_SESSION *sess;
uint8_t *sdec;
const uint8_t *p;
int slen, mlen, renew_ticket = 0;
uint8_t tick_hmac[EVP_MAX_MD_SIZE];
HMAC_CTX hctx;
EVP_CIPHER_CTX ctx;
SSL_CTX *tctx = s->initial_ctx;
/* Need at least keyname + iv + some encrypted data */
if (eticklen < 48) {
return 2;
}
/* Initialize session ticket encryption and HMAC contexts */
HMAC_CTX_init(&hctx);
EVP_CIPHER_CTX_init(&ctx);
if (tctx->tlsext_ticket_key_cb) {
uint8_t *nctick = (uint8_t *)etick;
int rv = tctx->tlsext_ticket_key_cb(s, nctick, nctick + 16, &ctx, &hctx, 0);
if (rv < 0) {
return -1;
}
if (rv == 0) {
return 2;
}
if (rv == 2) {
renew_ticket = 1;
}
} else {
/* Check key name matches */
if (memcmp(etick, tctx->tlsext_tick_key_name, 16)) {
return 2;
}
if (!HMAC_Init_ex(&hctx, tctx->tlsext_tick_hmac_key, 16, tlsext_tick_md(),
NULL) ||
!EVP_DecryptInit_ex(&ctx, EVP_aes_128_cbc(), NULL,
tctx->tlsext_tick_aes_key, etick + 16)) {
HMAC_CTX_cleanup(&hctx);
EVP_CIPHER_CTX_cleanup(&ctx);
return -1;
}
}
/* Attempt to process session ticket, first conduct sanity and integrity
* checks on ticket. */
mlen = HMAC_size(&hctx);
if (mlen < 0) {
HMAC_CTX_cleanup(&hctx);
EVP_CIPHER_CTX_cleanup(&ctx);
return -1;
}
eticklen -= mlen;
/* Check HMAC of encrypted ticket */
HMAC_Update(&hctx, etick, eticklen);
HMAC_Final(&hctx, tick_hmac, NULL);
HMAC_CTX_cleanup(&hctx);
if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
EVP_CIPHER_CTX_cleanup(&ctx);
return 2;
}
/* Attempt to decrypt session data */
/* Move p after IV to start of encrypted ticket, update length */
p = etick + 16 + EVP_CIPHER_CTX_iv_length(&ctx);
eticklen -= 16 + EVP_CIPHER_CTX_iv_length(&ctx);
sdec = OPENSSL_malloc(eticklen);
if (!sdec) {
EVP_CIPHER_CTX_cleanup(&ctx);
return -1;
}
EVP_DecryptUpdate(&ctx, sdec, &slen, p, eticklen);
if (EVP_DecryptFinal_ex(&ctx, sdec + slen, &mlen) <= 0) {
EVP_CIPHER_CTX_cleanup(&ctx);
OPENSSL_free(sdec);
return 2;
}
slen += mlen;
EVP_CIPHER_CTX_cleanup(&ctx);
p = sdec;
sess = d2i_SSL_SESSION(NULL, &p, slen);
OPENSSL_free(sdec);
if (sess) {
/* The session ID, if non-empty, is used by some clients to detect that the
* ticket has been accepted. So we copy it to the session structure. If it
* is empty set length to zero as required by standard. */
if (sesslen) {
memcpy(sess->session_id, sess_id, sesslen);
}
sess->session_id_length = sesslen;
*psess = sess;
if (renew_ticket) {
return 4;
}
return 3;
}
ERR_clear_error();
/* For session parse failure, indicate that we need to send a new ticket. */
return 2;
}
/* Tables to translate from NIDs to TLS v1.2 ids */
typedef struct {
int nid;
int id;
} tls12_lookup;
static const tls12_lookup tls12_md[] = {{NID_md5, TLSEXT_hash_md5},
{NID_sha1, TLSEXT_hash_sha1},
{NID_sha224, TLSEXT_hash_sha224},
{NID_sha256, TLSEXT_hash_sha256},
{NID_sha384, TLSEXT_hash_sha384},
{NID_sha512, TLSEXT_hash_sha512}};
static const tls12_lookup tls12_sig[] = {{EVP_PKEY_RSA, TLSEXT_signature_rsa},
{EVP_PKEY_EC, TLSEXT_signature_ecdsa}};
static int tls12_find_id(int nid, const tls12_lookup *table, size_t tlen) {
size_t i;
for (i = 0; i < tlen; i++) {
if (table[i].nid == nid) {
return table[i].id;
}
}
return -1;
}
static int tls12_find_nid(int id, const tls12_lookup *table, size_t tlen) {
size_t i;
for (i = 0; i < tlen; i++) {
if (table[i].id == id) {
return table[i].nid;
}
}
return NID_undef;
}
int tls12_get_sigandhash(uint8_t *p, const EVP_PKEY *pk, const EVP_MD *md) {
int sig_id, md_id;
if (!md) {
return 0;
}
md_id = tls12_find_id(EVP_MD_type(md), tls12_md,
sizeof(tls12_md) / sizeof(tls12_lookup));
if (md_id == -1) {
return 0;
}
sig_id = tls12_get_sigid(pk);
if (sig_id == -1) {
return 0;
}
p[0] = (uint8_t)md_id;
p[1] = (uint8_t)sig_id;
return 1;
}
int tls12_get_sigid(const EVP_PKEY *pk) {
return tls12_find_id(pk->type, tls12_sig,
sizeof(tls12_sig) / sizeof(tls12_lookup));
}
const EVP_MD *tls12_get_hash(uint8_t hash_alg) {
switch (hash_alg) {
case TLSEXT_hash_md5:
return EVP_md5();
case TLSEXT_hash_sha1:
return EVP_sha1();
case TLSEXT_hash_sha224:
return EVP_sha224();
case TLSEXT_hash_sha256:
return EVP_sha256();
case TLSEXT_hash_sha384:
return EVP_sha384();
case TLSEXT_hash_sha512:
return EVP_sha512();
default:
return NULL;
}
}
/* tls12_get_pkey_type returns the EVP_PKEY type corresponding to TLS signature
* algorithm |sig_alg|. It returns -1 if the type is unknown. */
static int tls12_get_pkey_type(uint8_t sig_alg) {
switch (sig_alg) {
case TLSEXT_signature_rsa:
return EVP_PKEY_RSA;
case TLSEXT_signature_ecdsa:
return EVP_PKEY_EC;
default:
return -1;
}
}
/* Convert TLS 1.2 signature algorithm extension values into NIDs */
static void tls1_lookup_sigalg(int *phash_nid, int *psign_nid,
int *psignhash_nid, const uint8_t *data) {
int sign_nid = 0, hash_nid = 0;
if (!phash_nid && !psign_nid && !psignhash_nid) {
return;
}
if (phash_nid || psignhash_nid) {
hash_nid = tls12_find_nid(data[0], tls12_md,
sizeof(tls12_md) / sizeof(tls12_lookup));
if (phash_nid) {
*phash_nid = hash_nid;
}
}
if (psign_nid || psignhash_nid) {
sign_nid = tls12_find_nid(data[1], tls12_sig,
sizeof(tls12_sig) / sizeof(tls12_lookup));
if (psign_nid) {
*psign_nid = sign_nid;
}
}
if (psignhash_nid) {
if (sign_nid && hash_nid) {
OBJ_find_sigid_by_algs(psignhash_nid, hash_nid, sign_nid);
} else {
*psignhash_nid = NID_undef;
}
}
}
/* Given preference and allowed sigalgs set shared sigalgs */
static int tls12_do_shared_sigalgs(TLS_SIGALGS *shsig, const uint8_t *pref,
size_t preflen, const uint8_t *allow,
size_t allowlen) {
const uint8_t *ptmp, *atmp;
size_t i, j, nmatch = 0;
for (i = 0, ptmp = pref; i < preflen; i += 2, ptmp += 2) {
/* Skip disabled hashes or signature algorithms */
if (tls12_get_hash(ptmp[0]) == NULL ||
tls12_get_pkey_type(ptmp[1]) == -1) {
continue;
}
for (j = 0, atmp = allow; j < allowlen; j += 2, atmp += 2) {
if (ptmp[0] == atmp[0] && ptmp[1] == atmp[1]) {
nmatch++;
if (shsig) {
shsig->rhash = ptmp[0];
shsig->rsign = ptmp[1];
tls1_lookup_sigalg(&shsig->hash_nid, &shsig->sign_nid,
&shsig->signandhash_nid, ptmp);
shsig++;
}
break;
}
}
}
return nmatch;
}
/* Set shared signature algorithms for SSL structures */
static int tls1_set_shared_sigalgs(SSL *s) {
const uint8_t *pref, *allow, *conf;
size_t preflen, allowlen, conflen;
size_t nmatch;
TLS_SIGALGS *salgs = NULL;
CERT *c = s->cert;
if (c->shared_sigalgs) {
OPENSSL_free(c->shared_sigalgs);
c->shared_sigalgs = NULL;
}
/* If client use client signature algorithms if not NULL */
if (!s->server && c->client_sigalgs) {
conf = c->client_sigalgs;
conflen = c->client_sigalgslen;
} else if (c->conf_sigalgs) {
conf = c->conf_sigalgs;
conflen = c->conf_sigalgslen;
} else {
conflen = tls12_get_psigalgs(s, &conf);
}
if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
pref = conf;
preflen = conflen;
allow = c->peer_sigalgs;
allowlen = c->peer_sigalgslen;
} else {
allow = conf;
allowlen = conflen;
pref = c->peer_sigalgs;
preflen = c->peer_sigalgslen;
}
nmatch = tls12_do_shared_sigalgs(NULL, pref, preflen, allow, allowlen);
if (!nmatch) {
return 1;
}
salgs = OPENSSL_malloc(nmatch * sizeof(TLS_SIGALGS));
if (!salgs) {
return 0;
}
nmatch = tls12_do_shared_sigalgs(salgs, pref, preflen, allow, allowlen);
c->shared_sigalgs = salgs;
c->shared_sigalgslen = nmatch;
return 1;
}
/* Set preferred digest for each key type */
int tls1_process_sigalgs(SSL *s, const CBS *sigalgs) {
CERT *c = s->cert;
/* Extension ignored for inappropriate versions */
if (!SSL_USE_SIGALGS(s)) {
return 1;
}
/* Length must be even */
if (CBS_len(sigalgs) % 2 != 0) {
return 0;
}
/* Should never happen */
if (!c) {
return 0;
}
if (!CBS_stow(sigalgs, &c->peer_sigalgs, &c->peer_sigalgslen)) {
return 0;
}
tls1_set_shared_sigalgs(s);
return 1;
}
const EVP_MD *tls1_choose_signing_digest(SSL *s, EVP_PKEY *pkey) {
CERT *c = s->cert;
int type = EVP_PKEY_id(pkey);
size_t i;
/* Select the first shared digest supported by our key. */
for (i = 0; i < c->shared_sigalgslen; i++) {
const EVP_MD *md = tls12_get_hash(c->shared_sigalgs[i].rhash);
if (md == NULL ||
tls12_get_pkey_type(c->shared_sigalgs[i].rsign) != type ||
!EVP_PKEY_supports_digest(pkey, md)) {
continue;
}
return md;
}
/* If no suitable digest may be found, default to SHA-1. */
return EVP_sha1();
}
int SSL_get_sigalgs(SSL *s, int idx, int *psign, int *phash, int *psignhash,
uint8_t *rsig, uint8_t *rhash) {
const uint8_t *psig = s->cert->peer_sigalgs;
if (psig == NULL) {
return 0;
}
if (idx >= 0) {
idx <<= 1;
if (idx >= (int)s->cert->peer_sigalgslen) {
return 0;
}
psig += idx;
if (rhash) {
*rhash = psig[0];
}
if (rsig) {
*rsig = psig[1];
}
tls1_lookup_sigalg(phash, psign, psignhash, psig);
}
return s->cert->peer_sigalgslen / 2;
}
int SSL_get_shared_sigalgs(SSL *s, int idx, int *psign, int *phash,
int *psignhash, uint8_t *rsig, uint8_t *rhash) {
TLS_SIGALGS *shsigalgs = s->cert->shared_sigalgs;
if (!shsigalgs || idx >= (int)s->cert->shared_sigalgslen) {
return 0;
}
shsigalgs += idx;
if (phash) {
*phash = shsigalgs->hash_nid;
}
if (psign) {
*psign = shsigalgs->sign_nid;
}
if (psignhash) {
*psignhash = shsigalgs->signandhash_nid;
}
if (rsig) {
*rsig = shsigalgs->rsign;
}
if (rhash) {
*rhash = shsigalgs->rhash;
}
return s->cert->shared_sigalgslen;
}
/* tls1_channel_id_hash calculates the signed data for a Channel ID on the
* given SSL connection and writes it to |md|. */
int tls1_channel_id_hash(EVP_MD_CTX *md, SSL *s) {
EVP_MD_CTX ctx;
uint8_t temp_digest[EVP_MAX_MD_SIZE];
unsigned temp_digest_len;
int i;
static const char kClientIDMagic[] = "TLS Channel ID signature";
if (s->s3->handshake_buffer &&
!ssl3_digest_cached_records(s, free_handshake_buffer)) {
return 0;
}
EVP_DigestUpdate(md, kClientIDMagic, sizeof(kClientIDMagic));
if (s->hit && s->s3->tlsext_channel_id_new) {
static const char kResumptionMagic[] = "Resumption";
EVP_DigestUpdate(md, kResumptionMagic, sizeof(kResumptionMagic));
if (s->session->original_handshake_hash_len == 0) {
return 0;
}
EVP_DigestUpdate(md, s->session->original_handshake_hash,
s->session->original_handshake_hash_len);
}
EVP_MD_CTX_init(&ctx);
for (i = 0; i < SSL_MAX_DIGEST; i++) {
if (s->s3->handshake_dgst[i] == NULL) {
continue;
}
EVP_MD_CTX_copy_ex(&ctx, s->s3->handshake_dgst[i]);
EVP_DigestFinal_ex(&ctx, temp_digest, &temp_digest_len);
EVP_DigestUpdate(md, temp_digest, temp_digest_len);
}
EVP_MD_CTX_cleanup(&ctx);
return 1;
}
/* tls1_record_handshake_hashes_for_channel_id records the current handshake
* hashes in |s->session| so that Channel ID resumptions can sign that data. */
int tls1_record_handshake_hashes_for_channel_id(SSL *s) {
int digest_len;
/* This function should never be called for a resumed session because the
* handshake hashes that we wish to record are for the original, full
* handshake. */
if (s->hit) {
return -1;
}
/* It only makes sense to call this function if Channel IDs have been
* negotiated. */
if (!s->s3->tlsext_channel_id_new) {
return -1;
}
digest_len =
tls1_handshake_digest(s, s->session->original_handshake_hash,
sizeof(s->session->original_handshake_hash));
if (digest_len < 0) {
return -1;
}
s->session->original_handshake_hash_len = digest_len;
return 1;
}
int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen,
int client) {
uint8_t *sigalgs, *sptr;
int rhash, rsign;
size_t i;
if (salglen & 1) {
return 0;
}
sigalgs = OPENSSL_malloc(salglen);
if (sigalgs == NULL) {
return 0;
}
for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
rhash = tls12_find_id(*psig_nids++, tls12_md,
sizeof(tls12_md) / sizeof(tls12_lookup));
rsign = tls12_find_id(*psig_nids++, tls12_sig,
sizeof(tls12_sig) / sizeof(tls12_lookup));
if (rhash == -1 || rsign == -1) {
goto err;
}
*sptr++ = rhash;
*sptr++ = rsign;
}
if (client) {
if (c->client_sigalgs) {
OPENSSL_free(c->client_sigalgs);
}
c->client_sigalgs = sigalgs;
c->client_sigalgslen = salglen;
} else {
if (c->conf_sigalgs) {
OPENSSL_free(c->conf_sigalgs);
}
c->conf_sigalgs = sigalgs;
c->conf_sigalgslen = salglen;
}
return 1;
err:
OPENSSL_free(sigalgs);
return 0;
}