blob: 97bcab3216f63c2ae2142152f7fac3ec0ee2302b [file] [log] [blame]
/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <algorithm>
#include <string>
#include <utility>
#include <vector>
#include <gtest/gtest.h>
#include <openssl/base64.h>
#include <openssl/bio.h>
#include <openssl/cipher.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/hmac.h>
#include <openssl/pem.h>
#include <openssl/sha.h>
#include <openssl/ssl.h>
#include <openssl/rand.h>
#include <openssl/x509.h>
#include "internal.h"
#include "../crypto/internal.h"
#include "../crypto/test/test_util.h"
#if defined(OPENSSL_WINDOWS)
/* Windows defines struct timeval in winsock2.h. */
OPENSSL_MSVC_PRAGMA(warning(push, 3))
#include <winsock2.h>
OPENSSL_MSVC_PRAGMA(warning(pop))
#else
#include <sys/time.h>
#endif
struct ExpectedCipher {
unsigned long id;
int in_group_flag;
};
struct CipherTest {
// The rule string to apply.
const char *rule;
// The list of expected ciphers, in order.
std::vector<ExpectedCipher> expected;
// True if this cipher list should fail in strict mode.
bool strict_fail;
};
struct CurveTest {
// The rule string to apply.
const char *rule;
// The list of expected curves, in order.
std::vector<uint16_t> expected;
};
static const CipherTest kCipherTests[] = {
// Selecting individual ciphers should work.
{
"ECDHE-ECDSA-CHACHA20-POLY1305:"
"ECDHE-RSA-CHACHA20-POLY1305:"
"ECDHE-ECDSA-AES128-GCM-SHA256:"
"ECDHE-RSA-AES128-GCM-SHA256",
{
{TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
{TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
},
false,
},
// + reorders selected ciphers to the end, keeping their relative order.
{
"ECDHE-ECDSA-CHACHA20-POLY1305:"
"ECDHE-RSA-CHACHA20-POLY1305:"
"ECDHE-ECDSA-AES128-GCM-SHA256:"
"ECDHE-RSA-AES128-GCM-SHA256:"
"+aRSA",
{
{TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
{TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
},
false,
},
// ! banishes ciphers from future selections.
{
"!aRSA:"
"ECDHE-ECDSA-CHACHA20-POLY1305:"
"ECDHE-RSA-CHACHA20-POLY1305:"
"ECDHE-ECDSA-AES128-GCM-SHA256:"
"ECDHE-RSA-AES128-GCM-SHA256",
{
{TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
{TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
},
false,
},
// Multiple masks can be ANDed in a single rule.
{
"kRSA+AESGCM+AES128",
{
{TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0},
},
false,
},
// - removes selected ciphers, but preserves their order for future
// selections. Select AES_128_GCM, but order the key exchanges RSA, DHE_RSA,
// ECDHE_RSA.
{
"ALL:-kECDHE:-kDHE:-kRSA:-ALL:"
"AESGCM+AES128+aRSA",
{
{TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0},
{TLS1_CK_DHE_RSA_WITH_AES_128_GCM_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
},
false,
},
// Unknown selectors are no-ops, except in strict mode.
{
"ECDHE-ECDSA-CHACHA20-POLY1305:"
"ECDHE-RSA-CHACHA20-POLY1305:"
"ECDHE-ECDSA-AES128-GCM-SHA256:"
"ECDHE-RSA-AES128-GCM-SHA256:"
"BOGUS1",
{
{TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
{TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
},
true,
},
// Unknown selectors are no-ops, except in strict mode.
{
"ECDHE-ECDSA-CHACHA20-POLY1305:"
"ECDHE-RSA-CHACHA20-POLY1305:"
"ECDHE-ECDSA-AES128-GCM-SHA256:"
"ECDHE-RSA-AES128-GCM-SHA256:"
"-BOGUS2:+BOGUS3:!BOGUS4",
{
{TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
{TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
},
true,
},
// Square brackets specify equi-preference groups.
{
"[ECDHE-ECDSA-CHACHA20-POLY1305|ECDHE-ECDSA-AES128-GCM-SHA256]:"
"[ECDHE-RSA-CHACHA20-POLY1305]:"
"ECDHE-RSA-AES128-GCM-SHA256",
{
{TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 1},
{TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
},
false,
},
// @STRENGTH performs a stable strength-sort of the selected ciphers and
// only the selected ciphers.
{
// To simplify things, banish all but {ECDHE_RSA,RSA} x
// {CHACHA20,AES_256_CBC,AES_128_CBC} x SHA1.
"!kEDH:!AESGCM:!3DES:!SHA256:!SHA384:"
// Order some ciphers backwards by strength.
"ALL:-CHACHA20:-AES256:-AES128:-ALL:"
// Select ECDHE ones and sort them by strength. Ties should resolve
// based on the order above.
"kECDHE:@STRENGTH:-ALL:"
// Now bring back everything uses RSA. ECDHE_RSA should be first, sorted
// by strength. Then RSA, backwards by strength.
"aRSA",
{
{TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA, 0},
{TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA, 0},
{TLS1_CK_RSA_WITH_AES_128_SHA, 0},
{TLS1_CK_RSA_WITH_AES_256_SHA, 0},
},
false,
},
// Exact ciphers may not be used in multi-part rules; they are treated
// as unknown aliases.
{
"ECDHE-ECDSA-AES128-GCM-SHA256:"
"ECDHE-RSA-AES128-GCM-SHA256:"
"!ECDHE-RSA-AES128-GCM-SHA256+RSA:"
"!ECDSA+ECDHE-ECDSA-AES128-GCM-SHA256",
{
{TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
},
true,
},
// SSLv3 matches everything that existed before TLS 1.2.
{
"AES128-SHA:AES128-SHA256:!SSLv3",
{
{TLS1_CK_RSA_WITH_AES_128_SHA256, 0},
},
false,
},
// TLSv1.2 matches everything added in TLS 1.2.
{
"AES128-SHA:AES128-SHA256:!TLSv1.2",
{
{TLS1_CK_RSA_WITH_AES_128_SHA, 0},
},
false,
},
// The two directives have no intersection. But each component is valid, so
// even in strict mode it is accepted.
{
"AES128-SHA:AES128-SHA256:!TLSv1.2+SSLv3",
{
{TLS1_CK_RSA_WITH_AES_128_SHA, 0},
{TLS1_CK_RSA_WITH_AES_128_SHA256, 0},
},
false,
},
};
static const char *kBadRules[] = {
// Invalid brackets.
"[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256",
"RSA]",
"[[RSA]]",
// Operators inside brackets.
"[+RSA]",
// Unknown directive.
"@BOGUS",
// Empty cipher lists error at SSL_CTX_set_cipher_list.
"",
"BOGUS",
// COMPLEMENTOFDEFAULT is empty.
"COMPLEMENTOFDEFAULT",
// Invalid command.
"?BAR",
// Special operators are not allowed if groups are used.
"[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:+FOO",
"[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:!FOO",
"[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:-FOO",
"[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:@STRENGTH",
// Opcode supplied, but missing selector.
"+",
};
static const char *kMustNotIncludeNull[] = {
"ALL",
"DEFAULT",
"HIGH",
"FIPS",
"SHA",
"SHA1",
"RSA",
"SSLv3",
"TLSv1",
"TLSv1.2",
};
static const CurveTest kCurveTests[] = {
{
"P-256",
{ SSL_CURVE_SECP256R1 },
},
{
"P-256:P-384:P-521:X25519",
{
SSL_CURVE_SECP256R1,
SSL_CURVE_SECP384R1,
SSL_CURVE_SECP521R1,
SSL_CURVE_X25519,
},
},
};
static const char *kBadCurvesLists[] = {
"",
":",
"::",
"P-256::X25519",
"RSA:P-256",
"P-256:RSA",
"X25519:P-256:",
":X25519:P-256",
};
static void PrintCipherPreferenceList(ssl_cipher_preference_list_st *list) {
bool in_group = false;
for (size_t i = 0; i < sk_SSL_CIPHER_num(list->ciphers); i++) {
const SSL_CIPHER *cipher = sk_SSL_CIPHER_value(list->ciphers, i);
if (!in_group && list->in_group_flags[i]) {
fprintf(stderr, "\t[\n");
in_group = true;
}
fprintf(stderr, "\t");
if (in_group) {
fprintf(stderr, " ");
}
fprintf(stderr, "%s\n", SSL_CIPHER_get_name(cipher));
if (in_group && !list->in_group_flags[i]) {
fprintf(stderr, "\t]\n");
in_group = false;
}
}
}
static bool TestCipherRule(const CipherTest &t) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
if (!ctx) {
return false;
}
if (!SSL_CTX_set_cipher_list(ctx.get(), t.rule)) {
fprintf(stderr, "Error testing cipher rule '%s'\n", t.rule);
return false;
}
if (!SSL_CTX_set_strict_cipher_list(ctx.get(), t.rule) != t.strict_fail) {
fprintf(stderr, "Unexpected strict failure result testing cipher rule '%s':"
" expected %d\n", t.rule, t.strict_fail);
return false;
}
// Compare the two lists.
if (sk_SSL_CIPHER_num(ctx->cipher_list->ciphers) != t.expected.size()) {
fprintf(stderr, "Error: cipher rule '%s' evaluated to:\n", t.rule);
PrintCipherPreferenceList(ctx->cipher_list);
return false;
}
for (size_t i = 0; i < t.expected.size(); i++) {
const SSL_CIPHER *cipher =
sk_SSL_CIPHER_value(ctx->cipher_list->ciphers, i);
if (t.expected[i].id != SSL_CIPHER_get_id(cipher) ||
t.expected[i].in_group_flag != ctx->cipher_list->in_group_flags[i]) {
fprintf(stderr, "Error: cipher rule '%s' evaluated to:\n", t.rule);
PrintCipherPreferenceList(ctx->cipher_list);
return false;
}
}
return true;
}
static bool TestRuleDoesNotIncludeNull(const char *rule) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(SSLv23_server_method()));
if (!ctx) {
return false;
}
if (!SSL_CTX_set_strict_cipher_list(ctx.get(), rule)) {
fprintf(stderr, "Error: cipher rule '%s' failed\n", rule);
return false;
}
for (size_t i = 0; i < sk_SSL_CIPHER_num(ctx->cipher_list->ciphers); i++) {
if (SSL_CIPHER_is_NULL(sk_SSL_CIPHER_value(ctx->cipher_list->ciphers, i))) {
fprintf(stderr, "Error: cipher rule '%s' includes NULL\n",rule);
return false;
}
}
return true;
}
static bool TestCipherRules() {
for (const CipherTest &test : kCipherTests) {
if (!TestCipherRule(test)) {
return false;
}
}
for (const char *rule : kBadRules) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(SSLv23_server_method()));
if (!ctx) {
return false;
}
if (SSL_CTX_set_cipher_list(ctx.get(), rule)) {
fprintf(stderr, "Cipher rule '%s' unexpectedly succeeded\n", rule);
return false;
}
ERR_clear_error();
}
for (const char *rule : kMustNotIncludeNull) {
if (!TestRuleDoesNotIncludeNull(rule)) {
return false;
}
}
return true;
}
static bool TestCurveRule(const CurveTest &t) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
if (!ctx) {
return false;
}
if (!SSL_CTX_set1_curves_list(ctx.get(), t.rule)) {
fprintf(stderr, "Error testing curves list '%s'\n", t.rule);
return false;
}
// Compare the two lists.
if (ctx->supported_group_list_len != t.expected.size()) {
fprintf(stderr, "Error testing curves list '%s': length\n", t.rule);
return false;
}
for (size_t i = 0; i < t.expected.size(); i++) {
if (t.expected[i] != ctx->supported_group_list[i]) {
fprintf(stderr, "Error testing curves list '%s': mismatch\n", t.rule);
return false;
}
}
return true;
}
static bool TestCurveRules() {
for (const CurveTest &test : kCurveTests) {
if (!TestCurveRule(test)) {
return false;
}
}
for (const char *rule : kBadCurvesLists) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(SSLv23_server_method()));
if (!ctx) {
return false;
}
if (SSL_CTX_set1_curves_list(ctx.get(), rule)) {
fprintf(stderr, "Curves list '%s' unexpectedly succeeded\n", rule);
return false;
}
ERR_clear_error();
}
return true;
}
// kOpenSSLSession is a serialized SSL_SESSION.
static const char kOpenSSLSession[] =
"MIIFqgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
"kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
"IWoJoQYCBFRDO46iBAICASyjggR6MIIEdjCCA16gAwIBAgIIK9dUvsPWSlUwDQYJ"
"KoZIhvcNAQEFBQAwSTELMAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMx"
"JTAjBgNVBAMTHEdvb2dsZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTQxMDA4"
"MTIwNzU3WhcNMTUwMTA2MDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwK"
"Q2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29v"
"Z2xlIEluYzEXMBUGA1UEAwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEB"
"AQUAA4IBDwAwggEKAoIBAQCcKeLrplAC+Lofy8t/wDwtB6eu72CVp0cJ4V3lknN6"
"huH9ct6FFk70oRIh/VBNBBz900jYy+7111Jm1b8iqOTQ9aT5C7SEhNcQFJvqzH3e"
"MPkb6ZSWGm1yGF7MCQTGQXF20Sk/O16FSjAynU/b3oJmOctcycWYkY0ytS/k3LBu"
"Id45PJaoMqjB0WypqvNeJHC3q5JjCB4RP7Nfx5jjHSrCMhw8lUMW4EaDxjaR9KDh"
"PLgjsk+LDIySRSRDaCQGhEOWLJZVLzLo4N6/UlctCHEllpBUSvEOyFga52qroGjg"
"rf3WOQ925MFwzd6AK+Ich0gDRg8sQfdLH5OuP1cfLfU1AgMBAAGjggFBMIIBPTAd"
"BgNVHSUEFjAUBggrBgEFBQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdv"
"b2dsZS5jb20waAYIKwYBBQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtp"
"Lmdvb2dsZS5jb20vR0lBRzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50"
"czEuZ29vZ2xlLmNvbS9vY3NwMB0GA1UdDgQWBBQ7a+CcxsZByOpc+xpYFcIbnUMZ"
"hTAMBgNVHRMBAf8EAjAAMB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEv"
"MBcGA1UdIAQQMA4wDAYKKwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRw"
"Oi8vcGtpLmdvb2dsZS5jb20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBBQUAA4IBAQCa"
"OXCBdoqUy5bxyq+Wrh1zsyyCFim1PH5VU2+yvDSWrgDY8ibRGJmfff3r4Lud5kal"
"dKs9k8YlKD3ITG7P0YT/Rk8hLgfEuLcq5cc0xqmE42xJ+Eo2uzq9rYorc5emMCxf"
"5L0TJOXZqHQpOEcuptZQ4OjdYMfSxk5UzueUhA3ogZKRcRkdB3WeWRp+nYRhx4St"
"o2rt2A0MKmY9165GHUqMK9YaaXHDXqBu7Sefr1uSoAP9gyIJKeihMivsGqJ1TD6Z"
"cc6LMe+dN2P8cZEQHtD1y296ul4Mivqk3jatUVL8/hCwgch9A8O4PGZq9WqBfEWm"
"IyHh1dPtbg1lOXdYCWtjpAIEAKUDAgEUqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36S"
"YTcLEkXqKwOBfF9vE4KX0NxeLwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9B"
"sNHM362zZnY27GpTw+Kwd751CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yE"
"OTDKPNj3+inbMaVigtK4PLyPq+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdA"
"i4gv7Y5oliyntgMBAQA=";
// kCustomSession is a custom serialized SSL_SESSION generated by
// filling in missing fields from |kOpenSSLSession|. This includes
// providing |peer_sha256|, so |peer| is not serialized.
static const char kCustomSession[] =
"MIIBdgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
"kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
"IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE"
"BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe"
"LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751"
"CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP"
"q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG"
"BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBLADBAEF";
// kBoringSSLSession is a serialized SSL_SESSION generated from bssl client.
static const char kBoringSSLSession[] =
"MIIRwQIBAQICAwMEAsAvBCDdoGxGK26mR+8lM0uq6+k9xYuxPnwAjpcF9n0Yli9R"
"kQQwbyshfWhdi5XQ1++7n2L1qqrcVlmHBPpr6yknT/u4pUrpQB5FZ7vqvNn8MdHf"
"9rWgoQYCBFXgs7uiBAICHCCjggR6MIIEdjCCA16gAwIBAgIIf+yfD7Y6UicwDQYJ"
"KoZIhvcNAQELBQAwSTELMAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMx"
"JTAjBgNVBAMTHEdvb2dsZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTUwODEy"
"MTQ1MzE1WhcNMTUxMTEwMDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwK"
"Q2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29v"
"Z2xlIEluYzEXMBUGA1UEAwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEB"
"AQUAA4IBDwAwggEKAoIBAQC0MeG5YGQ0t+IeJeoneP/PrhEaieibeKYkbKVLNZpo"
"PLuBinvhkXZo3DC133NpCBpy6ZktBwamqyixAyuk/NU6OjgXqwwxfQ7di1AInLIU"
"792c7hFyNXSUCG7At8Ifi3YwBX9Ba6u/1d6rWTGZJrdCq3QU11RkKYyTq2KT5mce"
"Tv9iGKqSkSTlp8puy/9SZ/3DbU3U+BuqCFqeSlz7zjwFmk35acdCilpJlVDDN5C/"
"RCh8/UKc8PaL+cxlt531qoTENvYrflBno14YEZlCBZsPiFeUSILpKEj3Ccwhy0eL"
"EucWQ72YZU8mUzXBoXGn0zA0crFl5ci/2sTBBGZsylNBAgMBAAGjggFBMIIBPTAd"
"BgNVHSUEFjAUBggrBgEFBQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdv"
"b2dsZS5jb20waAYIKwYBBQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtp"
"Lmdvb2dsZS5jb20vR0lBRzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50"
"czEuZ29vZ2xlLmNvbS9vY3NwMB0GA1UdDgQWBBS/bzHxcE73Q4j3slC4BLbMtLjG"
"GjAMBgNVHRMBAf8EAjAAMB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEv"
"MBcGA1UdIAQQMA4wDAYKKwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRw"
"Oi8vcGtpLmdvb2dsZS5jb20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBCwUAA4IBAQAb"
"qdWPZEHk0X7iKPCTHL6S3w6q1eR67goxZGFSM1lk1hjwyu7XcLJuvALVV9uY3ovE"
"kQZSHwT+pyOPWQhsSjO+1GyjvCvK/CAwiUmBX+bQRGaqHsRcio7xSbdVcajQ3bXd"
"X+s0WdbOpn6MStKAiBVloPlSxEI8pxY6x/BBCnTIk/+DMB17uZlOjG3vbAnkDkP+"
"n0OTucD9sHV7EVj9XUxi51nOfNBCN/s7lpUjDS/NJ4k3iwOtbCPswiot8vLO779a"
"f07vR03r349Iz/KTzk95rlFtX0IU+KYNxFNsanIXZ+C9FYGRXkwhHcvFb4qMUB1y"
"TTlM80jBMOwyjZXmjRAhpAIEAKUDAgEUqQUCAwGJwKqBpwSBpOgebbmn9NRUtMWH"
"+eJpqA5JLMFSMCChOsvKey3toBaCNGU7HfAEiiXNuuAdCBoK262BjQc2YYfqFzqH"
"zuppopXCvhohx7j/tnCNZIMgLYt/O9SXK2RYI5z8FhCCHvB4CbD5G0LGl5EFP27s"
"Jb6S3aTTYPkQe8yZSlxevg6NDwmTogLO9F7UUkaYmVcMQhzssEE2ZRYNwSOU6KjE"
"0Yj+8fAiBtbQriIEIN2L8ZlpaVrdN5KFNdvcmOxJu81P8q53X55xQyGTnGWwsgMC"
"ARezggvvMIIEdjCCA16gAwIBAgIIf+yfD7Y6UicwDQYJKoZIhvcNAQELBQAwSTEL"
"MAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMxJTAjBgNVBAMTHEdvb2ds"
"ZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTUwODEyMTQ1MzE1WhcNMTUxMTEw"
"MDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaWZvcm5pYTEWMBQG"
"A1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29vZ2xlIEluYzEXMBUGA1UE"
"AwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIB"
"AQC0MeG5YGQ0t+IeJeoneP/PrhEaieibeKYkbKVLNZpoPLuBinvhkXZo3DC133Np"
"CBpy6ZktBwamqyixAyuk/NU6OjgXqwwxfQ7di1AInLIU792c7hFyNXSUCG7At8If"
"i3YwBX9Ba6u/1d6rWTGZJrdCq3QU11RkKYyTq2KT5mceTv9iGKqSkSTlp8puy/9S"
"Z/3DbU3U+BuqCFqeSlz7zjwFmk35acdCilpJlVDDN5C/RCh8/UKc8PaL+cxlt531"
"qoTENvYrflBno14YEZlCBZsPiFeUSILpKEj3Ccwhy0eLEucWQ72YZU8mUzXBoXGn"
"0zA0crFl5ci/2sTBBGZsylNBAgMBAAGjggFBMIIBPTAdBgNVHSUEFjAUBggrBgEF"
"BQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdvb2dsZS5jb20waAYIKwYB"
"BQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtpLmdvb2dsZS5jb20vR0lB"
"RzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50czEuZ29vZ2xlLmNvbS9v"
"Y3NwMB0GA1UdDgQWBBS/bzHxcE73Q4j3slC4BLbMtLjGGjAMBgNVHRMBAf8EAjAA"
"MB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEvMBcGA1UdIAQQMA4wDAYK"
"KwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRwOi8vcGtpLmdvb2dsZS5j"
"b20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBCwUAA4IBAQAbqdWPZEHk0X7iKPCTHL6S"
"3w6q1eR67goxZGFSM1lk1hjwyu7XcLJuvALVV9uY3ovEkQZSHwT+pyOPWQhsSjO+"
"1GyjvCvK/CAwiUmBX+bQRGaqHsRcio7xSbdVcajQ3bXdX+s0WdbOpn6MStKAiBVl"
"oPlSxEI8pxY6x/BBCnTIk/+DMB17uZlOjG3vbAnkDkP+n0OTucD9sHV7EVj9XUxi"
"51nOfNBCN/s7lpUjDS/NJ4k3iwOtbCPswiot8vLO779af07vR03r349Iz/KTzk95"
"rlFtX0IU+KYNxFNsanIXZ+C9FYGRXkwhHcvFb4qMUB1yTTlM80jBMOwyjZXmjRAh"
"MIID8DCCAtigAwIBAgIDAjqDMA0GCSqGSIb3DQEBCwUAMEIxCzAJBgNVBAYTAlVT"
"MRYwFAYDVQQKEw1HZW9UcnVzdCBJbmMuMRswGQYDVQQDExJHZW9UcnVzdCBHbG9i"
"YWwgQ0EwHhcNMTMwNDA1MTUxNTU2WhcNMTYxMjMxMjM1OTU5WjBJMQswCQYDVQQG"
"EwJVUzETMBEGA1UEChMKR29vZ2xlIEluYzElMCMGA1UEAxMcR29vZ2xlIEludGVy"
"bmV0IEF1dGhvcml0eSBHMjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEB"
"AJwqBHdc2FCROgajguDYUEi8iT/xGXAaiEZ+4I/F8YnOIe5a/mENtzJEiaB0C1NP"
"VaTOgmKV7utZX8bhBYASxF6UP7xbSDj0U/ck5vuR6RXEz/RTDfRK/J9U3n2+oGtv"
"h8DQUB8oMANA2ghzUWx//zo8pzcGjr1LEQTrfSTe5vn8MXH7lNVg8y5Kr0LSy+rE"
"ahqyzFPdFUuLH8gZYR/Nnag+YyuENWllhMgZxUYi+FOVvuOAShDGKuy6lyARxzmZ"
"EASg8GF6lSWMTlJ14rbtCMoU/M4iarNOz0YDl5cDfsCx3nuvRTPPuj5xt970JSXC"
"DTWJnZ37DhF5iR43xa+OcmkCAwEAAaOB5zCB5DAfBgNVHSMEGDAWgBTAephojYn7"
"qwVkDBF9qn1luMrMTjAdBgNVHQ4EFgQUSt0GFhu89mi1dvWBtrtiGrpagS8wDgYD"
"VR0PAQH/BAQDAgEGMC4GCCsGAQUFBwEBBCIwIDAeBggrBgEFBQcwAYYSaHR0cDov"
"L2cuc3ltY2QuY29tMBIGA1UdEwEB/wQIMAYBAf8CAQAwNQYDVR0fBC4wLDAqoCig"
"JoYkaHR0cDovL2cuc3ltY2IuY29tL2NybHMvZ3RnbG9iYWwuY3JsMBcGA1UdIAQQ"
"MA4wDAYKKwYBBAHWeQIFATANBgkqhkiG9w0BAQsFAAOCAQEAqvqpIM1qZ4PtXtR+"
"3h3Ef+AlBgDFJPupyC1tft6dgmUsgWM0Zj7pUsIItMsv91+ZOmqcUHqFBYx90SpI"
"hNMJbHzCzTWf84LuUt5oX+QAihcglvcpjZpNy6jehsgNb1aHA30DP9z6eX0hGfnI"
"Oi9RdozHQZJxjyXON/hKTAAj78Q1EK7gI4BzfE00LshukNYQHpmEcxpw8u1VDu4X"
"Bupn7jLrLN1nBz/2i8Jw3lsA5rsb0zYaImxssDVCbJAJPZPpZAkiDoUGn8JzIdPm"
"X4DkjYUiOnMDsWCOrmji9D6X52ASCWg23jrW4kOVWzeBkoEfu43XrVJkFleW2V40"
"fsg12DCCA30wggLmoAMCAQICAxK75jANBgkqhkiG9w0BAQUFADBOMQswCQYDVQQG"
"EwJVUzEQMA4GA1UEChMHRXF1aWZheDEtMCsGA1UECxMkRXF1aWZheCBTZWN1cmUg"
"Q2VydGlmaWNhdGUgQXV0aG9yaXR5MB4XDTAyMDUyMTA0MDAwMFoXDTE4MDgyMTA0"
"MDAwMFowQjELMAkGA1UEBhMCVVMxFjAUBgNVBAoTDUdlb1RydXN0IEluYy4xGzAZ"
"BgNVBAMTEkdlb1RydXN0IEdsb2JhbCBDQTCCASIwDQYJKoZIhvcNAQEBBQADggEP"
"ADCCAQoCggEBANrMGGMw/fQXIxpWflvfPGw45HG3eJHUvKHYTPioQ7YD6U0hBwiI"
"2lgvZjkpvQV4i5046AW3an5xpObEYKaw74DkiSgPniXW7YPzraaRx5jJQhg1FJ2t"
"mEaSLk/K8YdDwRaVVy1Q74ktgHpXrfLuX2vSAI25FPgUFTXZwEaje3LIkb/JVSvN"
"0Jc+nCZkzN/Ogxlxyk7m1NV7qRnNVd7I7NJeOFPlXE+MLf5QIzb8ZubLjqQ5GQC3"
"lQI5kQsO/jgu0R0FmvZNPm8PBx2vLB6PYDni+jZTEznUXiYr2z2oFL0y6xgDKFIE"
"ceWrMz3hOLsHNoRinHnqFjD0X8Ar6HFr5PkCAwEAAaOB8DCB7TAfBgNVHSMEGDAW"
"gBRI5mj5K9KylddH2CMgEE8zmJCf1DAdBgNVHQ4EFgQUwHqYaI2J+6sFZAwRfap9"
"ZbjKzE4wDwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMCAQYwOgYDVR0fBDMw"
"MTAvoC2gK4YpaHR0cDovL2NybC5nZW90cnVzdC5jb20vY3Jscy9zZWN1cmVjYS5j"
"cmwwTgYDVR0gBEcwRTBDBgRVHSAAMDswOQYIKwYBBQUHAgEWLWh0dHBzOi8vd3d3"
"Lmdlb3RydXN0LmNvbS9yZXNvdXJjZXMvcmVwb3NpdG9yeTANBgkqhkiG9w0BAQUF"
"AAOBgQB24RJuTksWEoYwBrKBCM/wCMfHcX5m7sLt1Dsf//DwyE7WQziwuTB9GNBV"
"g6JqyzYRnOhIZqNtf7gT1Ef+i1pcc/yu2RsyGTirlzQUqpbS66McFAhJtrvlke+D"
"NusdVm/K2rxzY5Dkf3s+Iss9B+1fOHSc4wNQTqGvmO5h8oQ/Eg==";
// kBadSessionExtraField is a custom serialized SSL_SESSION generated by replacing
// the final (optional) element of |kCustomSession| with tag number 30.
static const char kBadSessionExtraField[] =
"MIIBdgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
"kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
"IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE"
"BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe"
"LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751"
"CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP"
"q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG"
"BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBL4DBAEF";
// kBadSessionVersion is a custom serialized SSL_SESSION generated by replacing
// the version of |kCustomSession| with 2.
static const char kBadSessionVersion[] =
"MIIBdgIBAgICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
"kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
"IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE"
"BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe"
"LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751"
"CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP"
"q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG"
"BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBLADBAEF";
// kBadSessionTrailingData is a custom serialized SSL_SESSION with trailing data
// appended.
static const char kBadSessionTrailingData[] =
"MIIBdgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
"kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
"IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE"
"BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe"
"LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751"
"CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP"
"q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG"
"BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBLADBAEFAAAA";
static bool DecodeBase64(std::vector<uint8_t> *out, const char *in) {
size_t len;
if (!EVP_DecodedLength(&len, strlen(in))) {
fprintf(stderr, "EVP_DecodedLength failed\n");
return false;
}
out->resize(len);
if (!EVP_DecodeBase64(out->data(), &len, len, (const uint8_t *)in,
strlen(in))) {
fprintf(stderr, "EVP_DecodeBase64 failed\n");
return false;
}
out->resize(len);
return true;
}
static bool TestSSL_SESSIONEncoding(const char *input_b64) {
const uint8_t *cptr;
uint8_t *ptr;
// Decode the input.
std::vector<uint8_t> input;
if (!DecodeBase64(&input, input_b64)) {
return false;
}
// Verify the SSL_SESSION decodes.
bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
if (!ssl_ctx) {
return false;
}
bssl::UniquePtr<SSL_SESSION> session(
SSL_SESSION_from_bytes(input.data(), input.size(), ssl_ctx.get()));
if (!session) {
fprintf(stderr, "SSL_SESSION_from_bytes failed\n");
return false;
}
// Verify the SSL_SESSION encoding round-trips.
size_t encoded_len;
bssl::UniquePtr<uint8_t> encoded;
uint8_t *encoded_raw;
if (!SSL_SESSION_to_bytes(session.get(), &encoded_raw, &encoded_len)) {
fprintf(stderr, "SSL_SESSION_to_bytes failed\n");
return false;
}
encoded.reset(encoded_raw);
if (encoded_len != input.size() ||
OPENSSL_memcmp(input.data(), encoded.get(), input.size()) != 0) {
fprintf(stderr, "SSL_SESSION_to_bytes did not round-trip\n");
hexdump(stderr, "Before: ", input.data(), input.size());
hexdump(stderr, "After: ", encoded_raw, encoded_len);
return false;
}
// Verify the SSL_SESSION also decodes with the legacy API.
cptr = input.data();
session.reset(d2i_SSL_SESSION(NULL, &cptr, input.size()));
if (!session || cptr != input.data() + input.size()) {
fprintf(stderr, "d2i_SSL_SESSION failed\n");
return false;
}
// Verify the SSL_SESSION encoding round-trips via the legacy API.
int len = i2d_SSL_SESSION(session.get(), NULL);
if (len < 0 || (size_t)len != input.size()) {
fprintf(stderr, "i2d_SSL_SESSION(NULL) returned invalid length\n");
return false;
}
encoded.reset((uint8_t *)OPENSSL_malloc(input.size()));
if (!encoded) {
fprintf(stderr, "malloc failed\n");
return false;
}
ptr = encoded.get();
len = i2d_SSL_SESSION(session.get(), &ptr);
if (len < 0 || (size_t)len != input.size()) {
fprintf(stderr, "i2d_SSL_SESSION returned invalid length\n");
return false;
}
if (ptr != encoded.get() + input.size()) {
fprintf(stderr, "i2d_SSL_SESSION did not advance ptr correctly\n");
return false;
}
if (OPENSSL_memcmp(input.data(), encoded.get(), input.size()) != 0) {
fprintf(stderr, "i2d_SSL_SESSION did not round-trip\n");
return false;
}
return true;
}
static bool TestBadSSL_SESSIONEncoding(const char *input_b64) {
std::vector<uint8_t> input;
if (!DecodeBase64(&input, input_b64)) {
return false;
}
// Verify that the SSL_SESSION fails to decode.
bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
if (!ssl_ctx) {
return false;
}
bssl::UniquePtr<SSL_SESSION> session(
SSL_SESSION_from_bytes(input.data(), input.size(), ssl_ctx.get()));
if (session) {
fprintf(stderr, "SSL_SESSION_from_bytes unexpectedly succeeded\n");
return false;
}
ERR_clear_error();
return true;
}
static bool TestDefaultVersion(uint16_t min_version, uint16_t max_version,
const SSL_METHOD *(*method)(void)) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(method()));
if (!ctx) {
return false;
}
if (ctx->min_version != min_version || ctx->max_version != max_version) {
fprintf(stderr, "Got min %04x, max %04x; wanted min %04x, max %04x\n",
ctx->min_version, ctx->max_version, min_version, max_version);
return false;
}
return true;
}
static bool CipherGetRFCName(std::string *out, uint16_t value) {
const SSL_CIPHER *cipher = SSL_get_cipher_by_value(value);
if (cipher == NULL) {
return false;
}
bssl::UniquePtr<char> rfc_name(SSL_CIPHER_get_rfc_name(cipher));
if (!rfc_name) {
return false;
}
out->assign(rfc_name.get());
return true;
}
typedef struct {
int id;
const char *rfc_name;
} CIPHER_RFC_NAME_TEST;
static const CIPHER_RFC_NAME_TEST kCipherRFCNameTests[] = {
{SSL3_CK_RSA_DES_192_CBC3_SHA, "TLS_RSA_WITH_3DES_EDE_CBC_SHA"},
{TLS1_CK_RSA_WITH_AES_128_SHA, "TLS_RSA_WITH_AES_128_CBC_SHA"},
{TLS1_CK_DHE_RSA_WITH_AES_256_SHA, "TLS_DHE_RSA_WITH_AES_256_CBC_SHA"},
{TLS1_CK_DHE_RSA_WITH_AES_256_SHA256,
"TLS_DHE_RSA_WITH_AES_256_CBC_SHA256"},
{TLS1_CK_ECDHE_RSA_WITH_AES_128_SHA256,
"TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256"},
{TLS1_CK_ECDHE_RSA_WITH_AES_256_SHA384,
"TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384"},
{TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
"TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256"},
{TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
"TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256"},
{TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
"TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384"},
{TLS1_CK_ECDHE_PSK_WITH_AES_128_CBC_SHA,
"TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA"},
{TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
"TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256"},
{TLS1_CK_AES_256_GCM_SHA384, "TLS_AES_256_GCM_SHA384"},
{TLS1_CK_AES_128_GCM_SHA256, "TLS_AES_128_GCM_SHA256"},
{TLS1_CK_CHACHA20_POLY1305_SHA256, "TLS_CHACHA20_POLY1305_SHA256"},
};
static bool TestCipherGetRFCName(void) {
for (size_t i = 0;
i < OPENSSL_ARRAY_SIZE(kCipherRFCNameTests); i++) {
const CIPHER_RFC_NAME_TEST *test = &kCipherRFCNameTests[i];
std::string rfc_name;
if (!CipherGetRFCName(&rfc_name, test->id & 0xffff)) {
fprintf(stderr, "SSL_CIPHER_get_rfc_name failed\n");
return false;
}
if (rfc_name != test->rfc_name) {
fprintf(stderr, "SSL_CIPHER_get_rfc_name: got '%s', wanted '%s'\n",
rfc_name.c_str(), test->rfc_name);
return false;
}
}
return true;
}
// CreateSessionWithTicket returns a sample |SSL_SESSION| with the specified
// version and ticket length or nullptr on failure.
static bssl::UniquePtr<SSL_SESSION> CreateSessionWithTicket(uint16_t version,
size_t ticket_len) {
std::vector<uint8_t> der;
if (!DecodeBase64(&der, kOpenSSLSession)) {
return nullptr;
}
bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
if (!ssl_ctx) {
return nullptr;
}
bssl::UniquePtr<SSL_SESSION> session(
SSL_SESSION_from_bytes(der.data(), der.size(), ssl_ctx.get()));
if (!session) {
return nullptr;
}
session->ssl_version = version;
// Swap out the ticket for a garbage one.
OPENSSL_free(session->tlsext_tick);
session->tlsext_tick = reinterpret_cast<uint8_t*>(OPENSSL_malloc(ticket_len));
if (session->tlsext_tick == nullptr) {
return nullptr;
}
OPENSSL_memset(session->tlsext_tick, 'a', ticket_len);
session->tlsext_ticklen = ticket_len;
// Fix up the timeout.
#if defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE)
session->time = 1234;
#else
session->time = time(NULL);
#endif
return session;
}
static bool GetClientHello(SSL *ssl, std::vector<uint8_t> *out) {
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem()));
if (!bio) {
return false;
}
// Do not configure a reading BIO, but record what's written to a memory BIO.
BIO_up_ref(bio.get());
SSL_set_bio(ssl, nullptr /* rbio */, bio.get());
int ret = SSL_connect(ssl);
if (ret > 0) {
// SSL_connect should fail without a BIO to write to.
return false;
}
ERR_clear_error();
const uint8_t *client_hello;
size_t client_hello_len;
if (!BIO_mem_contents(bio.get(), &client_hello, &client_hello_len)) {
return false;
}
*out = std::vector<uint8_t>(client_hello, client_hello + client_hello_len);
return true;
}
// GetClientHelloLen creates a client SSL connection with the specified version
// and ticket length. It returns the length of the ClientHello, not including
// the record header, on success and zero on error.
static size_t GetClientHelloLen(uint16_t max_version, uint16_t session_version,
size_t ticket_len) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
bssl::UniquePtr<SSL_SESSION> session =
CreateSessionWithTicket(session_version, ticket_len);
if (!ctx || !session) {
return 0;
}
// Set a one-element cipher list so the baseline ClientHello is unpadded.
bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
if (!ssl || !SSL_set_session(ssl.get(), session.get()) ||
!SSL_set_strict_cipher_list(ssl.get(), "ECDHE-RSA-AES128-GCM-SHA256") ||
!SSL_set_max_proto_version(ssl.get(), max_version)) {
return 0;
}
std::vector<uint8_t> client_hello;
if (!GetClientHello(ssl.get(), &client_hello) ||
client_hello.size() <= SSL3_RT_HEADER_LENGTH) {
return 0;
}
return client_hello.size() - SSL3_RT_HEADER_LENGTH;
}
struct PaddingTest {
size_t input_len, padded_len;
};
static const PaddingTest kPaddingTests[] = {
// ClientHellos of length below 0x100 do not require padding.
{0xfe, 0xfe},
{0xff, 0xff},
// ClientHellos of length 0x100 through 0x1fb are padded up to 0x200.
{0x100, 0x200},
{0x123, 0x200},
{0x1fb, 0x200},
// ClientHellos of length 0x1fc through 0x1ff get padded beyond 0x200. The
// padding extension takes a minimum of four bytes plus one required content
// byte. (To work around yet more server bugs, we avoid empty final
// extensions.)
{0x1fc, 0x201},
{0x1fd, 0x202},
{0x1fe, 0x203},
{0x1ff, 0x204},
// Finally, larger ClientHellos need no padding.
{0x200, 0x200},
{0x201, 0x201},
};
static bool TestPaddingExtension(uint16_t max_version,
uint16_t session_version) {
// Sample a baseline length.
size_t base_len = GetClientHelloLen(max_version, session_version, 1);
if (base_len == 0) {
return false;
}
for (const PaddingTest &test : kPaddingTests) {
if (base_len > test.input_len) {
fprintf(stderr,
"Baseline ClientHello too long (max_version = %04x, "
"session_version = %04x).\n",
max_version, session_version);
return false;
}
size_t padded_len = GetClientHelloLen(max_version, session_version,
1 + test.input_len - base_len);
if (padded_len != test.padded_len) {
fprintf(stderr,
"%u-byte ClientHello padded to %u bytes, not %u (max_version = "
"%04x, session_version = %04x).\n",
static_cast<unsigned>(test.input_len),
static_cast<unsigned>(padded_len),
static_cast<unsigned>(test.padded_len), max_version,
session_version);
return false;
}
}
return true;
}
// Test that |SSL_get_client_CA_list| echoes back the configured parameter even
// before configuring as a server.
TEST(SSLTest, ClientCAList) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(ctx);
bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
ASSERT_TRUE(ssl);
STACK_OF(X509_NAME) *stack = sk_X509_NAME_new_null();
ASSERT_TRUE(stack);
// |SSL_set_client_CA_list| takes ownership.
SSL_set_client_CA_list(ssl.get(), stack);
EXPECT_EQ(stack, SSL_get_client_CA_list(ssl.get()));
}
static void AppendSession(SSL_SESSION *session, void *arg) {
std::vector<SSL_SESSION*> *out =
reinterpret_cast<std::vector<SSL_SESSION*>*>(arg);
out->push_back(session);
}
// ExpectCache returns true if |ctx|'s session cache consists of |expected|, in
// order.
static bool ExpectCache(SSL_CTX *ctx,
const std::vector<SSL_SESSION*> &expected) {
// Check the linked list.
SSL_SESSION *ptr = ctx->session_cache_head;
for (SSL_SESSION *session : expected) {
if (ptr != session) {
return false;
}
// TODO(davidben): This is an absurd way to denote the end of the list.
if (ptr->next ==
reinterpret_cast<SSL_SESSION *>(&ctx->session_cache_tail)) {
ptr = nullptr;
} else {
ptr = ptr->next;
}
}
if (ptr != nullptr) {
return false;
}
// Check the hash table.
std::vector<SSL_SESSION*> actual, expected_copy;
lh_SSL_SESSION_doall_arg(SSL_CTX_sessions(ctx), AppendSession, &actual);
expected_copy = expected;
std::sort(actual.begin(), actual.end());
std::sort(expected_copy.begin(), expected_copy.end());
return actual == expected_copy;
}
static bssl::UniquePtr<SSL_SESSION> CreateTestSession(uint32_t number) {
bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
if (!ssl_ctx) {
return nullptr;
}
bssl::UniquePtr<SSL_SESSION> ret(SSL_SESSION_new(ssl_ctx.get()));
if (!ret) {
return nullptr;
}
ret->session_id_length = SSL3_SSL_SESSION_ID_LENGTH;
OPENSSL_memset(ret->session_id, 0, ret->session_id_length);
OPENSSL_memcpy(ret->session_id, &number, sizeof(number));
return ret;
}
// Test that the internal session cache behaves as expected.
static bool TestInternalSessionCache() {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
if (!ctx) {
return false;
}
// Prepare 10 test sessions.
std::vector<bssl::UniquePtr<SSL_SESSION>> sessions;
for (int i = 0; i < 10; i++) {
bssl::UniquePtr<SSL_SESSION> session = CreateTestSession(i);
if (!session) {
return false;
}
sessions.push_back(std::move(session));
}
SSL_CTX_sess_set_cache_size(ctx.get(), 5);
// Insert all the test sessions.
for (const auto &session : sessions) {
if (!SSL_CTX_add_session(ctx.get(), session.get())) {
return false;
}
}
// Only the last five should be in the list.
std::vector<SSL_SESSION*> expected = {
sessions[9].get(),
sessions[8].get(),
sessions[7].get(),
sessions[6].get(),
sessions[5].get(),
};
if (!ExpectCache(ctx.get(), expected)) {
return false;
}
// Inserting an element already in the cache should fail.
if (SSL_CTX_add_session(ctx.get(), sessions[7].get()) ||
!ExpectCache(ctx.get(), expected)) {
return false;
}
// Although collisions should be impossible (256-bit session IDs), the cache
// must handle them gracefully.
bssl::UniquePtr<SSL_SESSION> collision(CreateTestSession(7));
if (!collision || !SSL_CTX_add_session(ctx.get(), collision.get())) {
return false;
}
expected = {
collision.get(),
sessions[9].get(),
sessions[8].get(),
sessions[6].get(),
sessions[5].get(),
};
if (!ExpectCache(ctx.get(), expected)) {
return false;
}
// Removing sessions behaves correctly.
if (!SSL_CTX_remove_session(ctx.get(), sessions[6].get())) {
return false;
}
expected = {
collision.get(),
sessions[9].get(),
sessions[8].get(),
sessions[5].get(),
};
if (!ExpectCache(ctx.get(), expected)) {
return false;
}
// Removing sessions requires an exact match.
if (SSL_CTX_remove_session(ctx.get(), sessions[0].get()) ||
SSL_CTX_remove_session(ctx.get(), sessions[7].get()) ||
!ExpectCache(ctx.get(), expected)) {
return false;
}
return true;
}
static uint16_t EpochFromSequence(uint64_t seq) {
return static_cast<uint16_t>(seq >> 48);
}
static bssl::UniquePtr<X509> GetTestCertificate() {
static const char kCertPEM[] =
"-----BEGIN CERTIFICATE-----\n"
"MIICWDCCAcGgAwIBAgIJAPuwTC6rEJsMMA0GCSqGSIb3DQEBBQUAMEUxCzAJBgNV\n"
"BAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5ldCBX\n"
"aWRnaXRzIFB0eSBMdGQwHhcNMTQwNDIzMjA1MDQwWhcNMTcwNDIyMjA1MDQwWjBF\n"
"MQswCQYDVQQGEwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UECgwYSW50\n"
"ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKB\n"
"gQDYK8imMuRi/03z0K1Zi0WnvfFHvwlYeyK9Na6XJYaUoIDAtB92kWdGMdAQhLci\n"
"HnAjkXLI6W15OoV3gA/ElRZ1xUpxTMhjP6PyY5wqT5r6y8FxbiiFKKAnHmUcrgfV\n"
"W28tQ+0rkLGMryRtrukXOgXBv7gcrmU7G1jC2a7WqmeI8QIDAQABo1AwTjAdBgNV\n"
"HQ4EFgQUi3XVrMsIvg4fZbf6Vr5sp3Xaha8wHwYDVR0jBBgwFoAUi3XVrMsIvg4f\n"
"Zbf6Vr5sp3Xaha8wDAYDVR0TBAUwAwEB/zANBgkqhkiG9w0BAQUFAAOBgQA76Hht\n"
"ldY9avcTGSwbwoiuIqv0jTL1fHFnzy3RHMLDh+Lpvolc5DSrSJHCP5WuK0eeJXhr\n"
"T5oQpHL9z/cCDLAKCKRa4uV0fhEdOWBqyR9p8y5jJtye72t6CuFUV5iqcpF4BH4f\n"
"j2VNHwsSrJwkD4QUGlUtH7vwnQmyCFxZMmWAJg==\n"
"-----END CERTIFICATE-----\n";
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kCertPEM, strlen(kCertPEM)));
return bssl::UniquePtr<X509>(
PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr));
}
static bssl::UniquePtr<EVP_PKEY> GetTestKey() {
static const char kKeyPEM[] =
"-----BEGIN RSA PRIVATE KEY-----\n"
"MIICXgIBAAKBgQDYK8imMuRi/03z0K1Zi0WnvfFHvwlYeyK9Na6XJYaUoIDAtB92\n"
"kWdGMdAQhLciHnAjkXLI6W15OoV3gA/ElRZ1xUpxTMhjP6PyY5wqT5r6y8FxbiiF\n"
"KKAnHmUcrgfVW28tQ+0rkLGMryRtrukXOgXBv7gcrmU7G1jC2a7WqmeI8QIDAQAB\n"
"AoGBAIBy09Fd4DOq/Ijp8HeKuCMKTHqTW1xGHshLQ6jwVV2vWZIn9aIgmDsvkjCe\n"
"i6ssZvnbjVcwzSoByhjN8ZCf/i15HECWDFFh6gt0P5z0MnChwzZmvatV/FXCT0j+\n"
"WmGNB/gkehKjGXLLcjTb6dRYVJSCZhVuOLLcbWIV10gggJQBAkEA8S8sGe4ezyyZ\n"
"m4e9r95g6s43kPqtj5rewTsUxt+2n4eVodD+ZUlCULWVNAFLkYRTBCASlSrm9Xhj\n"
"QpmWAHJUkQJBAOVzQdFUaewLtdOJoPCtpYoY1zd22eae8TQEmpGOR11L6kbxLQsk\n"
"aMly/DOnOaa82tqAGTdqDEZgSNmCeKKknmECQAvpnY8GUOVAubGR6c+W90iBuQLj\n"
"LtFp/9ihd2w/PoDwrHZaoUYVcT4VSfJQog/k7kjE4MYXYWL8eEKg3WTWQNECQQDk\n"
"104Wi91Umd1PzF0ijd2jXOERJU1wEKe6XLkYYNHWQAe5l4J4MWj9OdxFXAxIuuR/\n"
"tfDwbqkta4xcux67//khAkEAvvRXLHTaa6VFzTaiiO8SaFsHV3lQyXOtMrBpB5jd\n"
"moZWgjHvB2W9Ckn7sDqsPB+U2tyX0joDdQEyuiMECDY8oQ==\n"
"-----END RSA PRIVATE KEY-----\n";
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kKeyPEM, strlen(kKeyPEM)));
return bssl::UniquePtr<EVP_PKEY>(
PEM_read_bio_PrivateKey(bio.get(), nullptr, nullptr, nullptr));
}
static bssl::UniquePtr<X509> GetECDSATestCertificate() {
static const char kCertPEM[] =
"-----BEGIN CERTIFICATE-----\n"
"MIIBzzCCAXagAwIBAgIJANlMBNpJfb/rMAkGByqGSM49BAEwRTELMAkGA1UEBhMC\n"
"QVUxEzARBgNVBAgMClNvbWUtU3RhdGUxITAfBgNVBAoMGEludGVybmV0IFdpZGdp\n"
"dHMgUHR5IEx0ZDAeFw0xNDA0MjMyMzIxNTdaFw0xNDA1MjMyMzIxNTdaMEUxCzAJ\n"
"BgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5l\n"
"dCBXaWRnaXRzIFB0eSBMdGQwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAATmK2ni\n"
"v2Wfl74vHg2UikzVl2u3qR4NRvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYa\n"
"HPUdfvGULUvPciLBo1AwTjAdBgNVHQ4EFgQUq4TSrKuV8IJOFngHVVdf5CaNgtEw\n"
"HwYDVR0jBBgwFoAUq4TSrKuV8IJOFngHVVdf5CaNgtEwDAYDVR0TBAUwAwEB/zAJ\n"
"BgcqhkjOPQQBA0gAMEUCIQDyoDVeUTo2w4J5m+4nUIWOcAZ0lVfSKXQA9L4Vh13E\n"
"BwIgfB55FGohg/B6dGh5XxSZmmi08cueFV7mHzJSYV51yRQ=\n"
"-----END CERTIFICATE-----\n";
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kCertPEM, strlen(kCertPEM)));
return bssl::UniquePtr<X509>(PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr));
}
static bssl::UniquePtr<EVP_PKEY> GetECDSATestKey() {
static const char kKeyPEM[] =
"-----BEGIN PRIVATE KEY-----\n"
"MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgBw8IcnrUoEqc3VnJ\n"
"TYlodwi1b8ldMHcO6NHJzgqLtGqhRANCAATmK2niv2Wfl74vHg2UikzVl2u3qR4N\n"
"Rvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYaHPUdfvGULUvPciLB\n"
"-----END PRIVATE KEY-----\n";
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kKeyPEM, strlen(kKeyPEM)));
return bssl::UniquePtr<EVP_PKEY>(
PEM_read_bio_PrivateKey(bio.get(), nullptr, nullptr, nullptr));
}
static bssl::UniquePtr<X509> GetChainTestCertificate() {
static const char kCertPEM[] =
"-----BEGIN CERTIFICATE-----\n"
"MIIC0jCCAbqgAwIBAgICEAAwDQYJKoZIhvcNAQELBQAwDzENMAsGA1UEAwwEQiBD\n"
"QTAeFw0xNjAyMjgyMDI3MDNaFw0yNjAyMjUyMDI3MDNaMBgxFjAUBgNVBAMMDUNs\n"
"aWVudCBDZXJ0IEEwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDRvaz8\n"
"CC/cshpCafJo4jLkHEoBqDLhdgFelJoAiQUyIqyWl2O7YHPnpJH+TgR7oelzNzt/\n"
"kLRcH89M/TszB6zqyLTC4aqmvzKL0peD/jL2LWBucR0WXIvjA3zoRuF/x86+rYH3\n"
"tHb+xs2PSs8EGL/Ev+ss+qTzTGEn26fuGNHkNw6tOwPpc+o8+wUtzf/kAthamo+c\n"
"IDs2rQ+lP7+aLZTLeU/q4gcLutlzcK5imex5xy2jPkweq48kijK0kIzl1cPlA5d1\n"
"z7C8jU50Pj9X9sQDJTN32j7UYRisJeeYQF8GaaN8SbrDI6zHgKzrRLyxDt/KQa9V\n"
"iLeXANgZi+Xx9KgfAgMBAAGjLzAtMAwGA1UdEwEB/wQCMAAwHQYDVR0lBBYwFAYI\n"
"KwYBBQUHAwEGCCsGAQUFBwMCMA0GCSqGSIb3DQEBCwUAA4IBAQBFEVbmYl+2RtNw\n"
"rDftRDF1v2QUbcN2ouSnQDHxeDQdSgasLzT3ui8iYu0Rw2WWcZ0DV5e0ztGPhWq7\n"
"AO0B120aFRMOY+4+bzu9Q2FFkQqc7/fKTvTDzIJI5wrMnFvUfzzvxh3OHWMYSs/w\n"
"giq33hTKeHEq6Jyk3btCny0Ycecyc3yGXH10sizUfiHlhviCkDuESk8mFDwDDzqW\n"
"ZF0IipzFbEDHoIxLlm3GQxpiLoEV4k8KYJp3R5KBLFyxM6UGPz8h72mIPCJp2RuK\n"
"MYgF91UDvVzvnYm6TfseM2+ewKirC00GOrZ7rEcFvtxnKSqYf4ckqfNdSU1Y+RRC\n"
"1ngWZ7Ih\n"
"-----END CERTIFICATE-----\n";
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kCertPEM, strlen(kCertPEM)));
return bssl::UniquePtr<X509>(
PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr));
}
static bssl::UniquePtr<X509> GetChainTestIntermediate() {
static const char kCertPEM[] =
"-----BEGIN CERTIFICATE-----\n"
"MIICwjCCAaqgAwIBAgICEAEwDQYJKoZIhvcNAQELBQAwFDESMBAGA1UEAwwJQyBS\n"
"b290IENBMB4XDTE2MDIyODIwMjcwM1oXDTI2MDIyNTIwMjcwM1owDzENMAsGA1UE\n"
"AwwEQiBDQTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBALsSCYmDip2D\n"
"GkjFxw7ykz26JSjELkl6ArlYjFJ3aT/SCh8qbS4gln7RH8CPBd78oFdfhIKQrwtZ\n"
"3/q21ykD9BAS3qHe2YdcJfm8/kWAy5DvXk6NXU4qX334KofBAEpgdA/igEFq1P1l\n"
"HAuIfZCpMRfT+i5WohVsGi8f/NgpRvVaMONLNfgw57mz1lbtFeBEISmX0kbsuJxF\n"
"Qj/Bwhi5/0HAEXG8e7zN4cEx0yPRvmOATRdVb/8dW2pwOHRJq9R5M0NUkIsTSnL7\n"
"6N/z8hRAHMsV3IudC5Yd7GXW1AGu9a+iKU+Q4xcZCoj0DC99tL4VKujrV1kAeqsM\n"
"cz5/dKzi6+cCAwEAAaMjMCEwDwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMC\n"
"AQYwDQYJKoZIhvcNAQELBQADggEBAIIeZiEeNhWWQ8Y4D+AGDwqUUeG8NjCbKrXQ\n"
"BlHg5wZ8xftFaiP1Dp/UAezmx2LNazdmuwrYB8lm3FVTyaPDTKEGIPS4wJKHgqH1\n"
"QPDhqNm85ey7TEtI9oYjsNim/Rb+iGkIAMXaxt58SzxbjvP0kMr1JfJIZbic9vye\n"
"NwIspMFIpP3FB8ywyu0T0hWtCQgL4J47nigCHpOu58deP88fS/Nyz/fyGVWOZ76b\n"
"WhWwgM3P3X95fQ3d7oFPR/bVh0YV+Cf861INwplokXgXQ3/TCQ+HNXeAMWn3JLWv\n"
"XFwk8owk9dq/kQGdndGgy3KTEW4ctPX5GNhf3LJ9Q7dLji4ReQ4=\n"
"-----END CERTIFICATE-----\n";
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kCertPEM, strlen(kCertPEM)));
return bssl::UniquePtr<X509>(
PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr));
}
static bssl::UniquePtr<EVP_PKEY> GetChainTestKey() {
static const char kKeyPEM[] =
"-----BEGIN PRIVATE KEY-----\n"
"MIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDRvaz8CC/cshpC\n"
"afJo4jLkHEoBqDLhdgFelJoAiQUyIqyWl2O7YHPnpJH+TgR7oelzNzt/kLRcH89M\n"
"/TszB6zqyLTC4aqmvzKL0peD/jL2LWBucR0WXIvjA3zoRuF/x86+rYH3tHb+xs2P\n"
"Ss8EGL/Ev+ss+qTzTGEn26fuGNHkNw6tOwPpc+o8+wUtzf/kAthamo+cIDs2rQ+l\n"
"P7+aLZTLeU/q4gcLutlzcK5imex5xy2jPkweq48kijK0kIzl1cPlA5d1z7C8jU50\n"
"Pj9X9sQDJTN32j7UYRisJeeYQF8GaaN8SbrDI6zHgKzrRLyxDt/KQa9ViLeXANgZ\n"
"i+Xx9KgfAgMBAAECggEBAK0VjSJzkyPaamcyTVSWjo7GdaBGcK60lk657RjR+lK0\n"
"YJ7pkej4oM2hdsVZFsP8Cs4E33nXLa/0pDsRov/qrp0WQm2skwqGMC1I/bZ0WRPk\n"
"wHaDrBBfESWnJDX/AGpVtlyOjPmgmK6J2usMPihQUDkKdAYrVWJePrMIxt1q6BMe\n"
"iczs3qriMmtY3bUc4UyUwJ5fhDLjshHvfuIpYQyI6EXZM6dZksn9LylXJnigY6QJ\n"
"HxOYO0BDwOsZ8yQ8J8afLk88i0GizEkgE1z3REtQUwgWfxr1WV/ud+T6/ZhSAgH9\n"
"042mQvSFZnIUSEsmCvjhWuAunfxHKCTcAoYISWfzWpkCgYEA7gpf3HHU5Tn+CgUn\n"
"1X5uGpG3DmcMgfeGgs2r2f/IIg/5Ac1dfYILiybL1tN9zbyLCJfcbFpWBc9hJL6f\n"
"CPc5hUiwWFJqBJewxQkC1Ae/HakHbip+IZ+Jr0842O4BAArvixk4Lb7/N2Ct9sTE\n"
"NJO6RtK9lbEZ5uK61DglHy8CS2UCgYEA4ZC1o36kPAMQBggajgnucb2yuUEelk0f\n"
"AEr+GI32MGE+93xMr7rAhBoqLg4AITyIfEnOSQ5HwagnIHonBbv1LV/Gf9ursx8Z\n"
"YOGbvT8zzzC+SU1bkDzdjAYnFQVGIjMtKOBJ3K07++ypwX1fr4QsQ8uKL8WSOWwt\n"
"Z3Bym6XiZzMCgYADnhy+2OwHX85AkLt+PyGlPbmuelpyTzS4IDAQbBa6jcuW/2wA\n"
"UE2km75VUXmD+u2R/9zVuLm99NzhFhSMqlUxdV1YukfqMfP5yp1EY6m/5aW7QuIP\n"
"2MDa7TVL9rIFMiVZ09RKvbBbQxjhuzPQKL6X/PPspnhiTefQ+dl2k9xREQKBgHDS\n"
"fMfGNEeAEKezrfSVqxphE9/tXms3L+ZpnCaT+yu/uEr5dTIAawKoQ6i9f/sf1/Sy\n"
"xedsqR+IB+oKrzIDDWMgoJybN4pkZ8E5lzhVQIjFjKgFdWLzzqyW9z1gYfABQPlN\n"
"FiS20WX0vgP1vcKAjdNrHzc9zyHBpgQzDmAj3NZZAoGBAI8vKCKdH7w3aL5CNkZQ\n"
"2buIeWNA2HZazVwAGG5F2TU/LmXfRKnG6dX5bkU+AkBZh56jNZy//hfFSewJB4Kk\n"
"buB7ERSdaNbO21zXt9FEA3+z0RfMd/Zv2vlIWOSB5nzl/7UKti3sribK6s9ZVLfi\n"
"SxpiPQ8d/hmSGwn4ksrWUsJD\n"
"-----END PRIVATE KEY-----\n";
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kKeyPEM, strlen(kKeyPEM)));
return bssl::UniquePtr<EVP_PKEY>(
PEM_read_bio_PrivateKey(bio.get(), nullptr, nullptr, nullptr));
}
static bool CompleteHandshakes(SSL *client, SSL *server) {
// Drive both their handshakes to completion.
for (;;) {
int client_ret = SSL_do_handshake(client);
int client_err = SSL_get_error(client, client_ret);
if (client_err != SSL_ERROR_NONE &&
client_err != SSL_ERROR_WANT_READ &&
client_err != SSL_ERROR_WANT_WRITE) {
fprintf(stderr, "Client error: %d\n", client_err);
return false;
}
int server_ret = SSL_do_handshake(server);
int server_err = SSL_get_error(server, server_ret);
if (server_err != SSL_ERROR_NONE &&
server_err != SSL_ERROR_WANT_READ &&
server_err != SSL_ERROR_WANT_WRITE) {
fprintf(stderr, "Server error: %d\n", server_err);
return false;
}
if (client_ret == 1 && server_ret == 1) {
break;
}
}
return true;
}
static bool ConnectClientAndServer(bssl::UniquePtr<SSL> *out_client,
bssl::UniquePtr<SSL> *out_server,
SSL_CTX *client_ctx, SSL_CTX *server_ctx,
SSL_SESSION *session) {
bssl::UniquePtr<SSL> client(SSL_new(client_ctx)), server(SSL_new(server_ctx));
if (!client || !server) {
return false;
}
SSL_set_connect_state(client.get());
SSL_set_accept_state(server.get());
SSL_set_session(client.get(), session);
BIO *bio1, *bio2;
if (!BIO_new_bio_pair(&bio1, 0, &bio2, 0)) {
return false;
}
// SSL_set_bio takes ownership.
SSL_set_bio(client.get(), bio1, bio1);
SSL_set_bio(server.get(), bio2, bio2);
if (!CompleteHandshakes(client.get(), server.get())) {
return false;
}
*out_client = std::move(client);
*out_server = std::move(server);
return true;
}
static bool TestSequenceNumber(bool is_dtls, const SSL_METHOD *method,
uint16_t version) {
bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(method));
bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(method));
if (!server_ctx || !client_ctx ||
!SSL_CTX_set_min_proto_version(client_ctx.get(), version) ||
!SSL_CTX_set_max_proto_version(client_ctx.get(), version) ||
!SSL_CTX_set_min_proto_version(server_ctx.get(), version) ||
!SSL_CTX_set_max_proto_version(server_ctx.get(), version)) {
return false;
}
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
if (!cert || !key || !SSL_CTX_use_certificate(server_ctx.get(), cert.get()) ||
!SSL_CTX_use_PrivateKey(server_ctx.get(), key.get())) {
return false;
}
bssl::UniquePtr<SSL> client, server;
if (!ConnectClientAndServer(&client, &server, client_ctx.get(),
server_ctx.get(), nullptr /* no session */)) {
return false;
}
// Drain any post-handshake messages to ensure there are no unread records
// on either end.
uint8_t byte = 0;
if (SSL_read(client.get(), &byte, 1) > 0 ||
SSL_read(server.get(), &byte, 1) > 0) {
fprintf(stderr, "Received unexpected data.\n");
return false;
}
uint64_t client_read_seq = SSL_get_read_sequence(client.get());
uint64_t client_write_seq = SSL_get_write_sequence(client.get());
uint64_t server_read_seq = SSL_get_read_sequence(server.get());
uint64_t server_write_seq = SSL_get_write_sequence(server.get());
if (is_dtls) {
// Both client and server must be at epoch 1.
if (EpochFromSequence(client_read_seq) != 1 ||
EpochFromSequence(client_write_seq) != 1 ||
EpochFromSequence(server_read_seq) != 1 ||
EpochFromSequence(server_write_seq) != 1) {
fprintf(stderr, "Bad epochs.\n");
return false;
}
// The next record to be written should exceed the largest received.
if (client_write_seq <= server_read_seq ||
server_write_seq <= client_read_seq) {
fprintf(stderr, "Inconsistent sequence numbers.\n");
return false;
}
} else {
// The next record to be written should equal the next to be received.
if (client_write_seq != server_read_seq ||
server_write_seq != client_read_seq) {
fprintf(stderr, "Inconsistent sequence numbers.\n");
return false;
}
}
// Send a record from client to server.
if (SSL_write(client.get(), &byte, 1) != 1 ||
SSL_read(server.get(), &byte, 1) != 1) {
fprintf(stderr, "Could not send byte.\n");
return false;
}
// The client write and server read sequence numbers should have
// incremented.
if (client_write_seq + 1 != SSL_get_write_sequence(client.get()) ||
server_read_seq + 1 != SSL_get_read_sequence(server.get())) {
fprintf(stderr, "Sequence numbers did not increment.\n");
return false;
}
return true;
}
static bool TestOneSidedShutdown(bool is_dtls, const SSL_METHOD *method,
uint16_t version) {
// SSL_shutdown is a no-op in DTLS.
if (is_dtls) {
return true;
}
bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(method));
bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(method));
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
if (!client_ctx || !server_ctx || !cert || !key ||
!SSL_CTX_set_min_proto_version(server_ctx.get(), version) ||
!SSL_CTX_set_max_proto_version(server_ctx.get(), version) ||
!SSL_CTX_set_min_proto_version(client_ctx.get(), version) ||
!SSL_CTX_set_max_proto_version(client_ctx.get(), version) ||
!SSL_CTX_use_certificate(server_ctx.get(), cert.get()) ||
!SSL_CTX_use_PrivateKey(server_ctx.get(), key.get())) {
return false;
}
bssl::UniquePtr<SSL> client, server;
if (!ConnectClientAndServer(&client, &server, client_ctx.get(),
server_ctx.get(), nullptr /* no session */)) {
return false;
}
// Shut down half the connection. SSL_shutdown will return 0 to signal only
// one side has shut down.
if (SSL_shutdown(client.get()) != 0) {
fprintf(stderr, "Could not shutdown.\n");
return false;
}
// Reading from the server should consume the EOF.
uint8_t byte;
if (SSL_read(server.get(), &byte, 1) != 0 ||
SSL_get_error(server.get(), 0) != SSL_ERROR_ZERO_RETURN) {
fprintf(stderr, "Connection was not shut down cleanly.\n");
return false;
}
// However, the server may continue to write data and then shut down the
// connection.
byte = 42;
if (SSL_write(server.get(), &byte, 1) != 1 ||
SSL_read(client.get(), &byte, 1) != 1 ||
byte != 42) {
fprintf(stderr, "Could not send byte.\n");
return false;
}
// The server may then shutdown the connection.
if (SSL_shutdown(server.get()) != 1 ||
SSL_shutdown(client.get()) != 1) {
fprintf(stderr, "Could not complete shutdown.\n");
return false;
}
return true;
}
TEST(SSLTest, SessionDuplication) {
bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(client_ctx);
ASSERT_TRUE(server_ctx);
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
ASSERT_TRUE(cert);
ASSERT_TRUE(key);
ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
bssl::UniquePtr<SSL> client, server;
ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
server_ctx.get(),
nullptr /* no session */));
SSL_SESSION *session0 = SSL_get_session(client.get());
bssl::UniquePtr<SSL_SESSION> session1(
SSL_SESSION_dup(session0, SSL_SESSION_DUP_ALL));
ASSERT_TRUE(session1);
session1->not_resumable = 0;
uint8_t *s0_bytes, *s1_bytes;
size_t s0_len, s1_len;
ASSERT_TRUE(SSL_SESSION_to_bytes(session0, &s0_bytes, &s0_len));
bssl::UniquePtr<uint8_t> free_s0(s0_bytes);
ASSERT_TRUE(SSL_SESSION_to_bytes(session1.get(), &s1_bytes, &s1_len));
bssl::UniquePtr<uint8_t> free_s1(s1_bytes);
EXPECT_EQ(Bytes(s0_bytes, s0_len), Bytes(s1_bytes, s1_len));
}
static void ExpectFDs(const SSL *ssl, int rfd, int wfd) {
EXPECT_EQ(rfd, SSL_get_rfd(ssl));
EXPECT_EQ(wfd, SSL_get_wfd(ssl));
// The wrapper BIOs are always equal when fds are equal, even if set
// individually.
if (rfd == wfd) {
EXPECT_EQ(SSL_get_rbio(ssl), SSL_get_wbio(ssl));
}
}
TEST(SSLTest, SetFD) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(ctx);
// Test setting different read and write FDs.
bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
ASSERT_TRUE(ssl);
EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1));
EXPECT_TRUE(SSL_set_wfd(ssl.get(), 2));
ExpectFDs(ssl.get(), 1, 2);
// Test setting the same FD.
ssl.reset(SSL_new(ctx.get()));
ASSERT_TRUE(ssl);
EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
ExpectFDs(ssl.get(), 1, 1);
// Test setting the same FD one side at a time.
ssl.reset(SSL_new(ctx.get()));
ASSERT_TRUE(ssl);
EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1));
EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1));
ExpectFDs(ssl.get(), 1, 1);
// Test setting the same FD in the other order.
ssl.reset(SSL_new(ctx.get()));
ASSERT_TRUE(ssl);
EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1));
EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1));
ExpectFDs(ssl.get(), 1, 1);
// Test changing the read FD partway through.
ssl.reset(SSL_new(ctx.get()));
ASSERT_TRUE(ssl);
EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
EXPECT_TRUE(SSL_set_rfd(ssl.get(), 2));
ExpectFDs(ssl.get(), 2, 1);
// Test changing the write FD partway through.
ssl.reset(SSL_new(ctx.get()));
ASSERT_TRUE(ssl);
EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
EXPECT_TRUE(SSL_set_wfd(ssl.get(), 2));
ExpectFDs(ssl.get(), 1, 2);
// Test a no-op change to the read FD partway through.
ssl.reset(SSL_new(ctx.get()));
ASSERT_TRUE(ssl);
EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1));
ExpectFDs(ssl.get(), 1, 1);
// Test a no-op change to the write FD partway through.
ssl.reset(SSL_new(ctx.get()));
ASSERT_TRUE(ssl);
EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1));
ExpectFDs(ssl.get(), 1, 1);
// ASan builds will implicitly test that the internal |BIO| reference-counting
// is correct.
}
TEST(SSLTest, SetBIO) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(ctx);
bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
bssl::UniquePtr<BIO> bio1(BIO_new(BIO_s_mem())), bio2(BIO_new(BIO_s_mem())),
bio3(BIO_new(BIO_s_mem()));
ASSERT_TRUE(ssl);
ASSERT_TRUE(bio1);
ASSERT_TRUE(bio2);
ASSERT_TRUE(bio3);
// SSL_set_bio takes one reference when the parameters are the same.
BIO_up_ref(bio1.get());
SSL_set_bio(ssl.get(), bio1.get(), bio1.get());
// Repeating the call does nothing.
SSL_set_bio(ssl.get(), bio1.get(), bio1.get());
// It takes one reference each when the parameters are different.
BIO_up_ref(bio2.get());
BIO_up_ref(bio3.get());
SSL_set_bio(ssl.get(), bio2.get(), bio3.get());
// Repeating the call does nothing.
SSL_set_bio(ssl.get(), bio2.get(), bio3.get());
// It takes one reference when changing only wbio.
BIO_up_ref(bio1.get());
SSL_set_bio(ssl.get(), bio2.get(), bio1.get());
// It takes one reference when changing only rbio and the two are different.
BIO_up_ref(bio3.get());
SSL_set_bio(ssl.get(), bio3.get(), bio1.get());
// If setting wbio to rbio, it takes no additional references.
SSL_set_bio(ssl.get(), bio3.get(), bio3.get());
// From there, wbio may be switched to something else.
BIO_up_ref(bio1.get());
SSL_set_bio(ssl.get(), bio3.get(), bio1.get());
// If setting rbio to wbio, it takes no additional references.
SSL_set_bio(ssl.get(), bio1.get(), bio1.get());
// From there, rbio may be switched to something else, but, for historical
// reasons, it takes a reference to both parameters.
BIO_up_ref(bio1.get());
BIO_up_ref(bio2.get());
SSL_set_bio(ssl.get(), bio2.get(), bio1.get());
// ASAN builds will implicitly test that the internal |BIO| reference-counting
// is correct.
}
static int VerifySucceed(X509_STORE_CTX *store_ctx, void *arg) { return 1; }
static bool TestGetPeerCertificate(bool is_dtls, const SSL_METHOD *method,
uint16_t version) {
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
if (!cert || !key) {
return false;
}
// Configure both client and server to accept any certificate.
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(method));
if (!ctx ||
!SSL_CTX_use_certificate(ctx.get(), cert.get()) ||
!SSL_CTX_use_PrivateKey(ctx.get(), key.get()) ||
!SSL_CTX_set_min_proto_version(ctx.get(), version) ||
!SSL_CTX_set_max_proto_version(ctx.get(), version)) {
return false;
}
SSL_CTX_set_verify(
ctx.get(), SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, nullptr);
SSL_CTX_set_cert_verify_callback(ctx.get(), VerifySucceed, NULL);
bssl::UniquePtr<SSL> client, server;
if (!ConnectClientAndServer(&client, &server, ctx.get(), ctx.get(),
nullptr /* no session */)) {
return false;
}
// Client and server should both see the leaf certificate.
bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(server.get()));
if (!peer || X509_cmp(cert.get(), peer.get()) != 0) {
fprintf(stderr, "Server peer certificate did not match.\n");
return false;
}
peer.reset(SSL_get_peer_certificate(client.get()));
if (!peer || X509_cmp(cert.get(), peer.get()) != 0) {
fprintf(stderr, "Client peer certificate did not match.\n");
return false;
}
// However, for historical reasons, the chain includes the leaf on the
// client, but does not on the server.
if (sk_X509_num(SSL_get_peer_cert_chain(client.get())) != 1) {
fprintf(stderr, "Client peer chain was incorrect.\n");
return false;
}
if (sk_X509_num(SSL_get_peer_cert_chain(server.get())) != 0) {
fprintf(stderr, "Server peer chain was incorrect.\n");
return false;
}
return true;
}
static bool TestRetainOnlySHA256OfCerts(bool is_dtls, const SSL_METHOD *method,
uint16_t version) {
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
if (!cert || !key) {
return false;
}
uint8_t *cert_der = NULL;
int cert_der_len = i2d_X509(cert.get(), &cert_der);
if (cert_der_len < 0) {
return false;
}
bssl::UniquePtr<uint8_t> free_cert_der(cert_der);
uint8_t cert_sha256[SHA256_DIGEST_LENGTH];
SHA256(cert_der, cert_der_len, cert_sha256);
// Configure both client and server to accept any certificate, but the
// server must retain only the SHA-256 of the peer.
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(method));
if (!ctx ||
!SSL_CTX_use_certificate(ctx.get(), cert.get()) ||
!SSL_CTX_use_PrivateKey(ctx.get(), key.get()) ||
!SSL_CTX_set_min_proto_version(ctx.get(), version) ||
!SSL_CTX_set_max_proto_version(ctx.get(), version)) {
return false;
}
SSL_CTX_set_verify(
ctx.get(), SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, nullptr);
SSL_CTX_set_cert_verify_callback(ctx.get(), VerifySucceed, NULL);
SSL_CTX_set_retain_only_sha256_of_client_certs(ctx.get(), 1);
bssl::UniquePtr<SSL> client, server;
if (!ConnectClientAndServer(&client, &server, ctx.get(), ctx.get(),
nullptr /* no session */)) {
return false;
}
// The peer certificate has been dropped.
bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(server.get()));
if (peer) {
fprintf(stderr, "Peer certificate was retained.\n");
return false;
}
SSL_SESSION *session = SSL_get_session(server.get());
if (!session->peer_sha256_valid) {
fprintf(stderr, "peer_sha256_valid was not set.\n");
return false;
}
if (OPENSSL_memcmp(cert_sha256, session->peer_sha256, SHA256_DIGEST_LENGTH) !=
0) {
fprintf(stderr, "peer_sha256 did not match.\n");
return false;
}
return true;
}
static bool ClientHelloMatches(uint16_t version, const uint8_t *expected,
size_t expected_len) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
if (!ctx ||
!SSL_CTX_set_max_proto_version(ctx.get(), version) ||
// Our default cipher list varies by CPU capabilities, so manually place
// the ChaCha20 ciphers in front.
!SSL_CTX_set_strict_cipher_list(ctx.get(), "CHACHA20:ALL")) {
return false;
}
bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
if (!ssl) {
return false;
}
std::vector<uint8_t> client_hello;
if (!GetClientHello(ssl.get(), &client_hello)) {
return false;
}
// Zero the client_random.
constexpr size_t kRandomOffset = 1 + 2 + 2 + // record header
1 + 3 + // handshake message header
2; // client_version
if (client_hello.size() < kRandomOffset + SSL3_RANDOM_SIZE) {
fprintf(stderr, "ClientHello for version %04x too short.\n", version);
return false;
}
OPENSSL_memset(client_hello.data() + kRandomOffset, 0, SSL3_RANDOM_SIZE);
if (client_hello.size() != expected_len ||
OPENSSL_memcmp(client_hello.data(), expected, expected_len) != 0) {
fprintf(stderr, "ClientHello for version %04x did not match:\n", version);
fprintf(stderr, "Got:\n\t");
for (size_t i = 0; i < client_hello.size(); i++) {
fprintf(stderr, "0x%02x, ", client_hello[i]);
}
fprintf(stderr, "\nWanted:\n\t");
for (size_t i = 0; i < expected_len; i++) {
fprintf(stderr, "0x%02x, ", expected[i]);
}
fprintf(stderr, "\n");
return false;
}
return true;
}
// Tests that our ClientHellos do not change unexpectedly.
static bool TestClientHello() {
static const uint8_t kSSL3ClientHello[] = {
0x16,
0x03, 0x00,
0x00, 0x3f,
0x01,
0x00, 0x00, 0x3b,
0x03, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00,
0x00, 0x14,
0xc0, 0x09,
0xc0, 0x13,
0x00, 0x33,
0xc0, 0x0a,
0xc0, 0x14,
0x00, 0x39,
0x00, 0x2f,
0x00, 0x35,
0x00, 0x0a,
0x00, 0xff, 0x01, 0x00,
};
if (!ClientHelloMatches(SSL3_VERSION, kSSL3ClientHello,
sizeof(kSSL3ClientHello))) {
return false;
}
static const uint8_t kTLS1ClientHello[] = {
0x16,
0x03, 0x01,
0x00, 0x5e,
0x01,
0x00, 0x00, 0x5a,
0x03, 0x01,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00,
0x00, 0x12,
0xc0, 0x09,
0xc0, 0x13,
0x00, 0x33,
0xc0, 0x0a,
0xc0, 0x14,
0x00, 0x39,
0x00, 0x2f,
0x00, 0x35,
0x00, 0x0a,
0x01, 0x00, 0x00, 0x1f, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00, 0x17, 0x00,
0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00,
0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18,
};
if (!ClientHelloMatches(TLS1_VERSION, kTLS1ClientHello,
sizeof(kTLS1ClientHello))) {
return false;
}
static const uint8_t kTLS11ClientHello[] = {
0x16,
0x03, 0x01,
0x00, 0x5e,
0x01,
0x00, 0x00, 0x5a,
0x03, 0x02,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00,
0x00, 0x12,
0xc0, 0x09,
0xc0, 0x13,
0x00, 0x33,
0xc0, 0x0a,
0xc0, 0x14,
0x00, 0x39,
0x00, 0x2f,
0x00, 0x35,
0x00, 0x0a,
0x01, 0x00, 0x00, 0x1f, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00, 0x17, 0x00,
0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00,
0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18,
};
if (!ClientHelloMatches(TLS1_1_VERSION, kTLS11ClientHello,
sizeof(kTLS11ClientHello))) {
return false;
}
// kTLS12ClientHello assumes RSA-PSS, which is disabled for Android system
// builds.
#if defined(BORINGSSL_ANDROID_SYSTEM)
return true;
#endif
static const uint8_t kTLS12ClientHello[] = {
0x16, 0x03, 0x01, 0x00, 0x9a, 0x01, 0x00, 0x00, 0x96, 0x03, 0x03, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x36, 0xcc, 0xa9,
0xcc, 0xa8, 0xc0, 0x2b, 0xc0, 0x2f, 0x00, 0x9e, 0xc0, 0x2c, 0xc0, 0x30,
0x00, 0x9f, 0xc0, 0x09, 0xc0, 0x23, 0xc0, 0x13, 0xc0, 0x27, 0x00, 0x33,
0x00, 0x67, 0xc0, 0x0a, 0xc0, 0x24, 0xc0, 0x14, 0xc0, 0x28, 0x00, 0x39,
0x00, 0x6b, 0x00, 0x9c, 0x00, 0x9d, 0x00, 0x2f, 0x00, 0x3c, 0x00, 0x35,
0x00, 0x3d, 0x00, 0x0a, 0x01, 0x00, 0x00, 0x37, 0xff, 0x01, 0x00, 0x01,
0x00, 0x00, 0x17, 0x00, 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x0d, 0x00,
0x14, 0x00, 0x12, 0x04, 0x03, 0x08, 0x04, 0x04, 0x01, 0x05, 0x03, 0x08,
0x05, 0x05, 0x01, 0x08, 0x06, 0x06, 0x01, 0x02, 0x01, 0x00, 0x0b, 0x00,
0x02, 0x01, 0x00, 0x00, 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00,
0x17, 0x00, 0x18,
};
if (!ClientHelloMatches(TLS1_2_VERSION, kTLS12ClientHello,
sizeof(kTLS12ClientHello))) {
return false;
}
// TODO(davidben): Add a change detector for TLS 1.3 once the spec and our
// implementation has settled enough that it won't change.
return true;
}
static bssl::UniquePtr<SSL_SESSION> g_last_session;
static int SaveLastSession(SSL *ssl, SSL_SESSION *session) {
// Save the most recent session.
g_last_session.reset(session);
return 1;
}
static bssl::UniquePtr<SSL_SESSION> CreateClientSession(SSL_CTX *client_ctx,
SSL_CTX *server_ctx) {
g_last_session = nullptr;
SSL_CTX_sess_set_new_cb(client_ctx, SaveLastSession);
// Connect client and server to get a session.
bssl::UniquePtr<SSL> client, server;
if (!ConnectClientAndServer(&client, &server, client_ctx, server_ctx,
nullptr /* no session */)) {
fprintf(stderr, "Failed to connect client and server.\n");
return nullptr;
}
// Run the read loop to account for post-handshake tickets in TLS 1.3.
SSL_read(client.get(), nullptr, 0);
SSL_CTX_sess_set_new_cb(client_ctx, nullptr);
if (!g_last_session) {
fprintf(stderr, "Client did not receive a session.\n");
return nullptr;
}
return std::move(g_last_session);
}
static bool ExpectSessionReused(SSL_CTX *client_ctx, SSL_CTX *server_ctx,
SSL_SESSION *session,
bool reused) {
bssl::UniquePtr<SSL> client, server;
if (!ConnectClientAndServer(&client, &server, client_ctx,
server_ctx, session)) {
fprintf(stderr, "Failed to connect client and server.\n");
return false;
}
if (SSL_session_reused(client.get()) != SSL_session_reused(server.get())) {
fprintf(stderr, "Client and server were inconsistent.\n");
return false;
}
bool was_reused = !!SSL_session_reused(client.get());
if (was_reused != reused) {
fprintf(stderr, "Session was%s reused, but we expected the opposite.\n",
was_reused ? "" : " not");
return false;
}
return true;
}
static bssl::UniquePtr<SSL_SESSION> ExpectSessionRenewed(SSL_CTX *client_ctx,
SSL_CTX *server_ctx,
SSL_SESSION *session) {
g_last_session = nullptr;
SSL_CTX_sess_set_new_cb(client_ctx, SaveLastSession);
bssl::UniquePtr<SSL> client, server;
if (!ConnectClientAndServer(&client, &server, client_ctx,
server_ctx, session)) {
fprintf(stderr, "Failed to connect client and server.\n");
return nullptr;
}
if (SSL_session_reused(client.get()) != SSL_session_reused(server.get())) {
fprintf(stderr, "Client and server were inconsistent.\n");
return nullptr;
}
if (!SSL_session_reused(client.get())) {
fprintf(stderr, "Session was not reused.\n");
return nullptr;
}
// Run the read loop to account for post-handshake tickets in TLS 1.3.
SSL_read(client.get(), nullptr, 0);
SSL_CTX_sess_set_new_cb(client_ctx, nullptr);
if (!g_last_session) {
fprintf(stderr, "Client did not receive a renewed session.\n");
return nullptr;
}
return std::move(g_last_session);
}
static int SwitchSessionIDContextSNI(SSL *ssl, int *out_alert, void *arg) {
static const uint8_t kContext[] = {3};
if (!SSL_set_session_id_context(ssl, kContext, sizeof(kContext))) {
return SSL_TLSEXT_ERR_ALERT_FATAL;
}
return SSL_TLSEXT_ERR_OK;
}
static int SwitchSessionIDContextEarly(const SSL_CLIENT_HELLO *client_hello) {
static const uint8_t kContext[] = {3};
if (!SSL_set_session_id_context(client_hello->ssl, kContext,
sizeof(kContext))) {
return -1;
}
return 1;
}
static bool TestSessionIDContext(bool is_dtls, const SSL_METHOD *method,
uint16_t version) {
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
if (!cert || !key) {
return false;
}
static const uint8_t kContext1[] = {1};
static const uint8_t kContext2[] = {2};
bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(method));
bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(method));
if (!server_ctx || !client_ctx ||
!SSL_CTX_use_certificate(server_ctx.get(), cert.get()) ||
!SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()) ||
!SSL_CTX_set_session_id_context(server_ctx.get(), kContext1,
sizeof(kContext1)) ||
!SSL_CTX_set_min_proto_version(client_ctx.get(), version) ||
!SSL_CTX_set_max_proto_version(client_ctx.get(), version) ||
!SSL_CTX_set_min_proto_version(server_ctx.get(), version) ||
!SSL_CTX_set_max_proto_version(server_ctx.get(), version)) {
return false;
}
SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_set_session_cache_mode(server_ctx.get(), SSL_SESS_CACHE_BOTH);
bssl::UniquePtr<SSL_SESSION> session =
CreateClientSession(client_ctx.get(), server_ctx.get());
if (!session) {
fprintf(stderr, "Error getting session.\n");
return false;
}
if (!ExpectSessionReused(client_ctx.get(), server_ctx.get(), session.get(),
true /* expect session reused */)) {
fprintf(stderr, "Error resuming session.\n");
return false;
}
// Change the session ID context.
if (!SSL_CTX_set_session_id_context(server_ctx.get(), kContext2,
sizeof(kContext2))) {
return false;
}
if (!ExpectSessionReused(client_ctx.get(), server_ctx.get(), session.get(),
false /* expect session not reused */)) {
fprintf(stderr, "Error connecting with a different context.\n");
return false;
}
// Change the session ID context back and install an SNI callback to switch
// it.
if (!SSL_CTX_set_session_id_context(server_ctx.get(), kContext1,
sizeof(kContext1))) {
return false;
}
SSL_CTX_set_tlsext_servername_callback(server_ctx.get(),
SwitchSessionIDContextSNI);
if (!ExpectSessionReused(client_ctx.get(), server_ctx.get(), session.get(),
false /* expect session not reused */)) {
fprintf(stderr, "Error connecting with a context switch on SNI callback.\n");
return false;
}
// Switch the session ID context with the early callback instead.
SSL_CTX_set_tlsext_servername_callback(server_ctx.get(), nullptr);
SSL_CTX_set_select_certificate_cb(server_ctx.get(),
SwitchSessionIDContextEarly);
if (!ExpectSessionReused(client_ctx.get(), server_ctx.get(), session.get(),
false /* expect session not reused */)) {
fprintf(stderr,
"Error connecting with a context switch on early callback.\n");
return false;
}
return true;
}
static timeval g_current_time;
static void CurrentTimeCallback(const SSL *ssl, timeval *out_clock) {
*out_clock = g_current_time;
}
static void FrozenTimeCallback(const SSL *ssl, timeval *out_clock) {
out_clock->tv_sec = 1000;
out_clock->tv_usec = 0;
}
static int RenewTicketCallback(SSL *ssl, uint8_t *key_name, uint8_t *iv,
EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx,
int encrypt) {
static const uint8_t kZeros[16] = {0};
if (encrypt) {
OPENSSL_memcpy(key_name, kZeros, sizeof(kZeros));
RAND_bytes(iv, 16);
} else if (OPENSSL_memcmp(key_name, kZeros, 16) != 0) {
return 0;
}
if (!HMAC_Init_ex(hmac_ctx, kZeros, sizeof(kZeros), EVP_sha256(), NULL) ||
!EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, kZeros, iv, encrypt)) {
return -1;
}
// Returning two from the callback in decrypt mode renews the
// session in TLS 1.2 and below.
return encrypt ? 1 : 2;
}
static bool GetServerTicketTime(long *out, const SSL_SESSION *session) {
if (session->tlsext_ticklen < 16 + 16 + SHA256_DIGEST_LENGTH) {
return false;
}
const uint8_t *ciphertext = session->tlsext_tick + 16 + 16;
size_t len = session->tlsext_ticklen - 16 - 16 - SHA256_DIGEST_LENGTH;
std::unique_ptr<uint8_t[]> plaintext(new uint8_t[len]);
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
// Fuzzer-mode tickets are unencrypted.
OPENSSL_memcpy(plaintext.get(), ciphertext, len);
#else
static const uint8_t kZeros[16] = {0};
const uint8_t *iv = session->tlsext_tick + 16;
bssl::ScopedEVP_CIPHER_CTX ctx;
int len1, len2;
if (!EVP_DecryptInit_ex(ctx.get(), EVP_aes_128_cbc(), nullptr, kZeros, iv) ||
!EVP_DecryptUpdate(ctx.get(), plaintext.get(), &len1, ciphertext, len) ||
!EVP_DecryptFinal_ex(ctx.get(), plaintext.get() + len1, &len2)) {
return false;
}
len = static_cast<size_t>(len1 + len2);
#endif
bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
if (!ssl_ctx) {
return false;
}
bssl::UniquePtr<SSL_SESSION> server_session(
SSL_SESSION_from_bytes(plaintext.get(), len, ssl_ctx.get()));
if (!server_session) {
return false;
}
*out = server_session->time;
return true;
}
static bool TestSessionTimeout(bool is_dtls, const SSL_METHOD *method,
uint16_t version) {
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
if (!cert || !key) {
return false;
}
for (bool server_test : std::vector<bool>{false, true}) {
static const time_t kStartTime = 1000;
g_current_time.tv_sec = kStartTime;
// We are willing to use a longer lifetime for TLS 1.3 sessions as
// resumptions still perform ECDHE.
const time_t timeout = version == TLS1_3_VERSION
? SSL_DEFAULT_SESSION_PSK_DHE_TIMEOUT
: SSL_DEFAULT_SESSION_TIMEOUT;
bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(method));
bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(method));
if (!server_ctx || !client_ctx ||
!SSL_CTX_use_certificate(server_ctx.get(), cert.get()) ||
!SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()) ||
!SSL_CTX_set_min_proto_version(client_ctx.get(), version) ||
!SSL_CTX_set_max_proto_version(client_ctx.get(), version) ||
!SSL_CTX_set_min_proto_version(server_ctx.get(), version) ||
!SSL_CTX_set_max_proto_version(server_ctx.get(), version)) {
return false;
}
SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_set_session_cache_mode(server_ctx.get(), SSL_SESS_CACHE_BOTH);
// Both client and server must enforce session timeouts. We configure the
// other side with a frozen clock so it never expires tickets.
if (server_test) {
SSL_CTX_set_current_time_cb(client_ctx.get(), FrozenTimeCallback);
SSL_CTX_set_current_time_cb(server_ctx.get(), CurrentTimeCallback);
} else {
SSL_CTX_set_current_time_cb(client_ctx.get(), CurrentTimeCallback);
SSL_CTX_set_current_time_cb(server_ctx.get(), FrozenTimeCallback);
}
// Configure a ticket callback which renews tickets.
SSL_CTX_set_tlsext_ticket_key_cb(server_ctx.get(), RenewTicketCallback);
bssl::UniquePtr<SSL_SESSION> session =
CreateClientSession(client_ctx.get(), server_ctx.get());
if (!session) {
fprintf(stderr, "Error getting session.\n");
return false;
}
// Advance the clock just behind the timeout.
g_current_time.tv_sec += timeout - 1;
if (!ExpectSessionReused(client_ctx.get(), server_ctx.get(), session.get(),
true /* expect session reused */)) {
fprintf(stderr, "Error resuming session.\n");
return false;
}
// Advance the clock one more second.
g_current_time.tv_sec++;
if (!ExpectSessionReused(client_ctx.get(), server_ctx.get(), session.get(),
false /* expect session not reused */)) {
fprintf(stderr, "Error resuming session.\n");
return false;
}
// Rewind the clock to before the session was minted.
g_current_time.tv_sec = kStartTime - 1;
if (!ExpectSessionReused(client_ctx.get(), server_ctx.get(), session.get(),
false /* expect session not reused */)) {
fprintf(stderr, "Error resuming session.\n");
return false;
}
// SSL 3.0 cannot renew sessions.
if (version == SSL3_VERSION) {
continue;
}
// Renew the session 10 seconds before expiration.
time_t new_start_time = kStartTime + timeout - 10;
g_current_time.tv_sec = new_start_time;
bssl::UniquePtr<SSL_SESSION> new_session =
ExpectSessionRenewed(client_ctx.get(), server_ctx.get(), session.get());
if (!new_session) {
fprintf(stderr, "Error renewing session.\n");
return false;
}
// This new session is not the same object as before.
if (session.get() == new_session.get()) {
fprintf(stderr, "New and old sessions alias.\n");
return false;
}
// Check the sessions have timestamps measured from issuance.
long session_time = 0;
if (server_test) {
if (!GetServerTicketTime(&session_time, new_session.get())) {
fprintf(stderr, "Failed to decode session ticket.\n");
return false;
}
} else {
session_time = new_session->time;
}
if (session_time != g_current_time.tv_sec) {
fprintf(stderr, "New session is not measured from issuance.\n");
return false;
}
if (version == TLS1_3_VERSION) {
// Renewal incorporates fresh key material in TLS 1.3, so we extend the
// lifetime TLS 1.3.
g_current_time.tv_sec = new_start_time + timeout - 1;
if (!ExpectSessionReused(client_ctx.get(), server_ctx.get(),
new_session.get(),
true /* expect session reused */)) {
fprintf(stderr, "Error resuming renewed session.\n");
return false;
}
// The new session expires after the new timeout.
g_current_time.tv_sec = new_start_time + timeout + 1;
if (!ExpectSessionReused(client_ctx.get(), server_ctx.get(),
new_session.get(),
false /* expect session ot reused */)) {
fprintf(stderr, "Renewed session's lifetime is too long.\n");
return false;
}
// Renew the session until it begins just past the auth timeout.
time_t auth_end_time = kStartTime + SSL_DEFAULT_SESSION_AUTH_TIMEOUT;
while (new_start_time < auth_end_time - 1000) {
// Get as close as possible to target start time.
new_start_time =
std::min(auth_end_time - 1000, new_start_time + timeout - 1);
g_current_time.tv_sec = new_start_time;
new_session = ExpectSessionRenewed(client_ctx.get(), server_ctx.get(),
new_session.get());
if (!new_session) {
fprintf(stderr, "Error renewing session.\n");
return false;
}
}
// Now the session's lifetime is bound by the auth timeout.
g_current_time.tv_sec = auth_end_time - 1;
if (!ExpectSessionReused(client_ctx.get(), server_ctx.get(),
new_session.get(),
true /* expect session reused */)) {
fprintf(stderr, "Error resuming renewed session.\n");
return false;
}
g_current_time.tv_sec = auth_end_time + 1;
if (!ExpectSessionReused(client_ctx.get(), server_ctx.get(),
new_session.get(),
false /* expect session ot reused */)) {
fprintf(stderr, "Renewed session's lifetime is too long.\n");
return false;
}
} else {
// The new session is usable just before the old expiration.
g_current_time.tv_sec = kStartTime + timeout - 1;
if (!ExpectSessionReused(client_ctx.get(), server_ctx.get(),
new_session.get(),
true /* expect session reused */)) {
fprintf(stderr, "Error resuming renewed session.\n");
return false;
}
// Renewal does not extend the lifetime, so it is not usable beyond the
// old expiration.
g_current_time.tv_sec = kStartTime + timeout + 1;
if (!ExpectSessionReused(client_ctx.get(), server_ctx.get(),
new_session.get(),
false /* expect session not reused */)) {
fprintf(stderr, "Renewed session's lifetime is too long.\n");
return false;
}
}
}
return true;
}
static int SwitchContext(SSL *ssl, int *out_alert, void *arg) {
SSL_CTX *ctx = reinterpret_cast<SSL_CTX*>(arg);
SSL_set_SSL_CTX(ssl, ctx);
return SSL_TLSEXT_ERR_OK;
}
static bool TestSNICallback(bool is_dtls, const SSL_METHOD *method,
uint16_t version) {
// SSL 3.0 lacks extensions.
if (version == SSL3_VERSION) {
return true;
}
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
bssl::UniquePtr<X509> cert2 = GetECDSATestCertificate();
bssl::UniquePtr<EVP_PKEY> key2 = GetECDSATestKey();
if (!cert || !key || !cert2 || !key2) {
return false;
}
// Test that switching the |SSL_CTX| at the SNI callback behaves correctly.
static const uint16_t kECDSAWithSHA256 = SSL_SIGN_ECDSA_SECP256R1_SHA256;
static const uint8_t kSCTList[] = {0, 6, 0, 4, 5, 6, 7, 8};
static const uint8_t kOCSPResponse[] = {1, 2, 3, 4};
bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(method));
bssl::UniquePtr<SSL_CTX> server_ctx2(SSL_CTX_new(method));
bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(method));
if (!server_ctx || !server_ctx2 || !client_ctx ||
!SSL_CTX_use_certificate(server_ctx.get(), cert.get()) ||
!SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()) ||
!SSL_CTX_use_certificate(server_ctx2.get(), cert2.get()) ||
!SSL_CTX_use_PrivateKey(server_ctx2.get(), key2.get()) ||
!SSL_CTX_set_signed_cert_timestamp_list(server_ctx2.get(), kSCTList,
sizeof(kSCTList)) ||
!SSL_CTX_set_ocsp_response(server_ctx2.get(), kOCSPResponse,
sizeof(kOCSPResponse)) ||
// Historically signing preferences would be lost in some cases with the
// SNI callback, which triggers the TLS 1.2 SHA-1 default. To ensure
// this doesn't happen when |version| is TLS 1.2, configure the private
// key to only sign SHA-256.
!SSL_CTX_set_signing_algorithm_prefs(server_ctx2.get(), &kECDSAWithSHA256,
1) ||
!SSL_CTX_set_min_proto_version(client_ctx.get(), version) ||
!SSL_CTX_set_max_proto_version(client_ctx.get(), version) ||
!SSL_CTX_set_min_proto_version(server_ctx.get(), version) ||
!SSL_CTX_set_max_proto_version(server_ctx.get(), version) ||
!SSL_CTX_set_min_proto_version(server_ctx2.get(), version) ||
!SSL_CTX_set_max_proto_version(server_ctx2.get(), version)) {
return false;
}
SSL_CTX_set_tlsext_servername_callback(server_ctx.get(), SwitchContext);
SSL_CTX_set_tlsext_servername_arg(server_ctx.get(), server_ctx2.get());
SSL_CTX_enable_signed_cert_timestamps(client_ctx.get());
SSL_CTX_enable_ocsp_stapling(client_ctx.get());
bssl::UniquePtr<SSL> client, server;
if (!ConnectClientAndServer(&client, &server, client_ctx.get(),
server_ctx.get(), nullptr)) {
fprintf(stderr, "Handshake failed.\n");
return false;
}
// The client should have received |cert2|.
bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(client.get()));
if (!peer || X509_cmp(peer.get(), cert2.get()) != 0) {
fprintf(stderr, "Incorrect certificate received.\n");
return false;
}
// The client should have received |server_ctx2|'s SCT list.
const uint8_t *data;
size_t len;
SSL_get0_signed_cert_timestamp_list(client.get(), &data, &len);
if (Bytes(kSCTList) != Bytes(data, len)) {
fprintf(stderr, "Incorrect SCT list received.\n");
return false;
}
// The client should have received |server_ctx2|'s OCSP response.
SSL_get0_ocsp_response(client.get(), &data, &len);
if (Bytes(kOCSPResponse) != Bytes(data, len)) {
fprintf(stderr, "Incorrect OCSP response received.\n");
return false;
}
return true;
}
// Test that the early callback can swap the maximum version.
TEST(SSLTest, EarlyCallbackVersionSwitch) {
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(cert);
ASSERT_TRUE(key);
ASSERT_TRUE(server_ctx);
ASSERT_TRUE(client_ctx);
ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION));
ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION));
SSL_CTX_set_select_certificate_cb(
server_ctx.get(), [](const SSL_CLIENT_HELLO *client_hello) -> int {
if (!SSL_set_max_proto_version(client_hello->ssl, TLS1_2_VERSION)) {
return -1;
}
return 1;
});
bssl::UniquePtr<SSL> client, server;
ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
server_ctx.get(), nullptr));
EXPECT_EQ(TLS1_2_VERSION, SSL_version(client.get()));
}
TEST(SSLTest, SetVersion) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(ctx);
// Set valid TLS versions.
EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_VERSION));
EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_1_VERSION));
EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_VERSION));
EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_1_VERSION));
// Invalid TLS versions are rejected.
EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), DTLS1_VERSION));
EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x0200));
EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x1234));
EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), DTLS1_VERSION));
EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x0200));
EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x1234));
// Zero is the default version.
EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), 0));
EXPECT_EQ(TLS1_2_VERSION, ctx->max_version);
EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), 0));
EXPECT_EQ(SSL3_VERSION, ctx->min_version);
ctx.reset(SSL_CTX_new(DTLS_method()));
ASSERT_TRUE(ctx);
EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), DTLS1_VERSION));
EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), DTLS1_2_VERSION));
EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), DTLS1_VERSION));
EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), DTLS1_2_VERSION));
EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_VERSION));
EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0xfefe /* DTLS 1.1 */));
EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0xfffe /* DTLS 0.1 */));
EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x1234));
EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_VERSION));
EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0xfefe /* DTLS 1.1 */));
EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0xfffe /* DTLS 0.1 */));
EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x1234));
EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), 0));
EXPECT_EQ(TLS1_2_VERSION, ctx->max_version);
EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), 0));
EXPECT_EQ(TLS1_1_VERSION, ctx->min_version);
}
static const char *GetVersionName(uint16_t version) {
switch (version) {
case SSL3_VERSION:
return "SSLv3";
case TLS1_VERSION:
return "TLSv1";
case TLS1_1_VERSION:
return "TLSv1.1";
case TLS1_2_VERSION:
return "TLSv1.2";
case TLS1_3_VERSION:
return "TLSv1.3";
case DTLS1_VERSION:
return "DTLSv1";
case DTLS1_2_VERSION:
return "DTLSv1.2";
default:
return "???";
}
}
static bool TestVersion(bool is_dtls, const SSL_METHOD *method,
uint16_t version) {
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
if (!cert || !key) {
return false;
}
bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(method));
bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(method));
bssl::UniquePtr<SSL> client, server;
if (!server_ctx || !client_ctx ||
!SSL_CTX_use_certificate(server_ctx.get(), cert.get()) ||
!SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()) ||
!SSL_CTX_set_min_proto_version(client_ctx.get(), version) ||
!SSL_CTX_set_max_proto_version(client_ctx.get(), version) ||
!SSL_CTX_set_min_proto_version(server_ctx.get(), version) ||
!SSL_CTX_set_max_proto_version(server_ctx.get(), version) ||
!ConnectClientAndServer(&client, &server, client_ctx.get(),
server_ctx.get(), nullptr /* no session */)) {
fprintf(stderr, "Failed to connect.\n");
return false;
}
if (SSL_version(client.get()) != version ||
SSL_version(server.get()) != version) {
fprintf(stderr, "Version mismatch. Got %04x and %04x, wanted %04x.\n",
SSL_version(client.get()), SSL_version(server.get()), version);
return false;
}
// Test the version name is reported as expected.
const char *version_name = GetVersionName(version);
if (strcmp(version_name, SSL_get_version(client.get())) != 0 ||
strcmp(version_name, SSL_get_version(server.get())) != 0) {
fprintf(stderr, "Version name mismatch. Got '%s' and '%s', wanted '%s'.\n",
SSL_get_version(client.get()), SSL_get_version(server.get()),
version_name);
return false;
}
// Test SSL_SESSION reports the same name.
const char *client_name =
SSL_SESSION_get_version(SSL_get_session(client.get()));
const char *server_name =
SSL_SESSION_get_version(SSL_get_session(server.get()));
if (strcmp(version_name, client_name) != 0 ||
strcmp(version_name, server_name) != 0) {
fprintf(stderr,
"Session version name mismatch. Got '%s' and '%s', wanted '%s'.\n",
client_name, server_name, version_name);
return false;
}
return true;
}
// Tests that that |SSL_get_pending_cipher| is available during the ALPN
// selection callback.
static bool TestALPNCipherAvailable(bool is_dtls, const SSL_METHOD *method,
uint16_t version) {
// SSL 3.0 lacks extensions.
if (version == SSL3_VERSION) {
return true;
}
static const uint8_t kALPNProtos[] = {0x03, 'f', 'o', 'o'};
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
if (!cert || !key) {
return false;
}
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(method));
if (!ctx || !SSL_CTX_use_certificate(ctx.get(), cert.get()) ||
!SSL_CTX_use_PrivateKey(ctx.get(), key.get()) ||
!SSL_CTX_set_min_proto_version(ctx.get(), version) ||
!SSL_CTX_set_max_proto_version(ctx.get(), version) ||
SSL_CTX_set_alpn_protos(ctx.get(), kALPNProtos, sizeof(kALPNProtos)) !=
0) {
return false;
}
// The ALPN callback does not fail the handshake on error, so have the
// callback write a boolean.
std::pair<uint16_t, bool> callback_state(version, false);
SSL_CTX_set_alpn_select_cb(
ctx.get(),
[](SSL *ssl, const uint8_t **out, uint8_t *out_len, const uint8_t *in,
unsigned in_len, void *arg) -> int {
auto state = reinterpret_cast<std::pair<uint16_t, bool> *>(arg);
if (SSL_get_pending_cipher(ssl) != nullptr &&
SSL_version(ssl) == state->first) {
state->second = true;
}
return SSL_TLSEXT_ERR_NOACK;
},
&callback_state);
bssl::UniquePtr<SSL> client, server;
if (!ConnectClientAndServer(&client, &server, ctx.get(), ctx.get(),
nullptr /* no session */)) {
return false;
}
if (!callback_state.second) {
fprintf(stderr, "The pending cipher was not known in the ALPN callback.\n");
return false;
}
return true;
}
static bool TestSSLClearSessionResumption(bool is_dtls,
const SSL_METHOD *method,
uint16_t version) {
// Skip this for TLS 1.3. TLS 1.3's ticket mechanism is incompatible with this
// API pattern.
if (version == TLS1_3_VERSION) {
return true;
}
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(method));
bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(method));
if (!cert || !key || !server_ctx || !client_ctx ||
!SSL_CTX_use_certificate(server_ctx.get(), cert.get()) ||
!SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()) ||
!SSL_CTX_set_min_proto_version(client_ctx.get(), version) ||
!SSL_CTX_set_max_proto_version(client_ctx.get(), version) ||
!SSL_CTX_set_min_proto_version(server_ctx.get(), version) ||
!SSL_CTX_set_max_proto_version(server_ctx.get(), version)) {
return false;
}
// Connect a client and a server.
bssl::UniquePtr<SSL> client, server;
if (!ConnectClientAndServer(&client, &server, client_ctx.get(),
server_ctx.get(), nullptr /* no session */)) {
return false;
}
if (SSL_session_reused(client.get()) ||
SSL_session_reused(server.get())) {
fprintf(stderr, "Session unexpectedly reused.\n");
return false;
}
// Reset everything.
if (!SSL_clear(client.get()) ||
!SSL_clear(server.get())) {
fprintf(stderr, "SSL_clear failed.\n");
return false;
}
// Attempt to connect a second time.
if (!CompleteHandshakes(client.get(), server.get())) {
fprintf(stderr, "Could not reuse SSL objects.\n");
return false;
}
// |SSL_clear| should implicitly offer the previous session to the server.
if (!SSL_session_reused(client.get()) ||
!SSL_session_reused(server.get())) {
fprintf(stderr, "Session was not reused in second try.\n");
return false;
}
return true;
}
static bool ChainsEqual(STACK_OF(X509) *chain,
const std::vector<X509 *> &expected) {
if (sk_X509_num(chain) != expected.size()) {
return false;
}
for (size_t i = 0; i < expected.size(); i++) {
if (X509_cmp(sk_X509_value(chain, i), expected[i]) != 0) {
return false;
}
}
return true;
}
static bool TestAutoChain(bool is_dtls, const SSL_METHOD *method,
uint16_t version) {
bssl::UniquePtr<X509> cert = GetChainTestCertificate();
bssl::UniquePtr<X509> intermediate = GetChainTestIntermediate();
bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey();
if (!cert || !intermediate || !key) {
return false;
}
// Configure both client and server to accept any certificate. Add
// |intermediate| to the cert store.
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(method));
if (!ctx ||
!SSL_CTX_use_certificate(ctx.get(), cert.get()) ||
!SSL_CTX_use_PrivateKey(ctx.get(), key.get()) ||
!SSL_CTX_set_min_proto_version(ctx.get(), version) ||
!SSL_CTX_set_max_proto_version(ctx.get(), version) ||
!X509_STORE_add_cert(SSL_CTX_get_cert_store(ctx.get()),
intermediate.get())) {
return false;
}
SSL_CTX_set_verify(
ctx.get(), SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, nullptr);
SSL_CTX_set_cert_verify_callback(ctx.get(), VerifySucceed, NULL);
// By default, the client and server should each only send the leaf.
bssl::UniquePtr<SSL> client, server;
if (!ConnectClientAndServer(&client, &server, ctx.get(), ctx.get(),
nullptr /* no session */)) {
return false;
}
if (!ChainsEqual(SSL_get_peer_full_cert_chain(client.get()), {cert.get()})) {
fprintf(stderr, "Client-received chain did not match.\n");
return false;
}
if (!ChainsEqual(SSL_get_peer_full_cert_chain(server.get()), {cert.get()})) {
fprintf(stderr, "Server-received chain did not match.\n");
return false;
}
// If auto-chaining is enabled, then the intermediate is sent.
SSL_CTX_clear_mode(ctx.get(), SSL_MODE_NO_AUTO_CHAIN);
if (!ConnectClientAndServer(&client, &server, ctx.get(), ctx.get(),
nullptr /* no session */)) {
return false;
}
if (!ChainsEqual(SSL_get_peer_full_cert_chain(client.get()),
{cert.get(), intermediate.get()})) {
fprintf(stderr, "Client-received chain did not match (auto-chaining).\n");
return false;
}
if (!ChainsEqual(SSL_get_peer_full_cert_chain(server.get()),
{cert.get(), intermediate.get()})) {
fprintf(stderr, "Server-received chain did not match (auto-chaining).\n");
return false;
}
// Auto-chaining does not override explicitly-configured intermediates.
if (!SSL_CTX_add1_chain_cert(ctx.get(), cert.get()) ||
!ConnectClientAndServer(&client, &server, ctx.get(), ctx.get(),
nullptr /* no session */)) {
return false;
}
if (!ChainsEqual(SSL_get_peer_full_cert_chain(client.get()),
{cert.get(), cert.get()})) {
fprintf(stderr,
"Client-received chain did not match (auto-chaining, explicit "
"intermediate).\n");
return false;
}
if (!ChainsEqual(SSL_get_peer_full_cert_chain(server.get()),
{cert.get(), cert.get()})) {
fprintf(stderr,
"Server-received chain did not match (auto-chaining, explicit "
"intermediate).\n");
return false;
}
return true;
}
static bool ExpectBadWriteRetry() {
int err = ERR_get_error();
if (ERR_GET_LIB(err) != ERR_LIB_SSL ||
ERR_GET_REASON(err) != SSL_R_BAD_WRITE_RETRY) {
char buf[ERR_ERROR_STRING_BUF_LEN];
ERR_error_string_n(err, buf, sizeof(buf));
fprintf(stderr, "Wanted SSL_R_BAD_WRITE_RETRY, got: %s.\n", buf);
return false;
}
if (ERR_peek_error() != 0) {
fprintf(stderr, "Unexpected error following SSL_R_BAD_WRITE_RETRY.\n");
return false;
}
return true;
}
static bool TestSSLWriteRetry(bool is_dtls, const SSL_METHOD *method,
uint16_t version) {
if (is_dtls) {
return true;
}
for (bool enable_partial_write : std::vector<bool>{false, true}) {
// Connect a client and server.
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(method));
bssl::UniquePtr<SSL> client, server;
if (!cert || !key || !ctx ||
!SSL_CTX_use_certificate(ctx.get(), cert.get()) ||
!SSL_CTX_use_PrivateKey(ctx.get(), key.get()) ||
!SSL_CTX_set_min_proto_version(ctx.get(), version) ||
!SSL_CTX_set_max_proto_version(ctx.get(), version) ||
!ConnectClientAndServer(&client, &server, ctx.get(), ctx.get(),
nullptr /* no session */)) {
return false;
}
if (enable_partial_write) {
SSL_set_mode(client.get(), SSL_MODE_ENABLE_PARTIAL_WRITE);
}
// Write without reading until the buffer is full and we have an unfinished
// write. Keep a count so we may reread it again later. "hello!" will be
// written in two chunks, "hello" and "!".
char data[] = "hello!";
static const int kChunkLen = 5; // The length of "hello".
unsigned count = 0;
for (;;) {
int ret = SSL_write(client.get(), data, kChunkLen);
if (ret <= 0) {
int err = SSL_get_error(client.get(), ret);
if (SSL_get_error(client.get(), ret) == SSL_ERROR_WANT_WRITE) {
break;
}
fprintf(stderr, "SSL_write failed in unexpected way: %d\n", err);
return false;
}
if (ret != 5) {
fprintf(stderr, "SSL_write wrote %d bytes, expected 5.\n", ret);
return false;
}
count++;
}
// Retrying with the same parameters is legal.
if (SSL_get_error(client.get(), SSL_write(client.get(), data, kChunkLen)) !=
SSL_ERROR_WANT_WRITE) {
fprintf(stderr, "SSL_write retry unexpectedly failed.\n");
return false;
}
// Retrying with the same buffer but shorter length is not legal.
if (SSL_get_error(client.get(),
SSL_write(client.get(), data, kChunkLen - 1)) !=
SSL_ERROR_SSL ||
!ExpectBadWriteRetry()) {
fprintf(stderr, "SSL_write retry did not fail as expected.\n");
return false;
}
// Retrying with a different buffer pointer is not legal.
char data2[] = "hello";
if (SSL_get_error(client.get(), SSL_write(client.get(), data2,
kChunkLen)) != SSL_ERROR_SSL ||
!ExpectBadWriteRetry()) {
fprintf(stderr, "SSL_write retry did not fail as expected.\n");
return false;
}
// With |SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER|, the buffer may move.
SSL_set_mode(client.get(), SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER);
if (SSL_get_error(client.get(),
SSL_write(client.get(), data2, kChunkLen)) !=
SSL_ERROR_WANT_WRITE) {
fprintf(stderr, "SSL_write retry unexpectedly failed.\n");
return false;
}
// |SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER| does not disable length checks.
if (SSL_get_error(client.get(),
SSL_write(client.get(), data2, kChunkLen - 1)) !=
SSL_ERROR_SSL ||
!ExpectBadWriteRetry()) {
fprintf(stderr, "SSL_write retry did not fail as expected.\n");
return false;
}
// Retrying with a larger buffer is legal.
if (SSL_get_error(client.get(),
SSL_write(client.get(), data, kChunkLen + 1)) !=
SSL_ERROR_WANT_WRITE) {
fprintf(stderr, "SSL_write retry unexpectedly failed.\n");
return false;
}
// Drain the buffer.
char buf[20];
for (unsigned i = 0; i < count; i++) {
if (SSL_read(server.get(), buf, sizeof(buf)) != kChunkLen ||
OPENSSL_memcmp(buf, "hello", kChunkLen) != 0) {
fprintf(stderr, "Failed to read initial records.\n");
return false;
}
}
// Now that there is space, a retry with a larger buffer should flush the
// pending record, skip over that many bytes of input (on assumption they
// are the same), and write the remainder. If SSL_MODE_ENABLE_PARTIAL_WRITE
// is set, this will complete in two steps.
char data3[] = "_____!";
if (enable_partial_write) {
if (SSL_write(client.get(), data3, kChunkLen + 1) != kChunkLen ||
SSL_write(client.get(), data3 + kChunkLen, 1) != 1) {
fprintf(stderr, "SSL_write retry failed.\n");
return false;
}
} else if (SSL_write(client.get(), data3, kChunkLen + 1) != kChunkLen + 1) {
fprintf(stderr, "SSL_write retry failed.\n");
return false;
}
// Check the last write was correct. The data will be spread over two
// records, so SSL_read returns twice.
if (SSL_read(server.get(), buf, sizeof(buf)) != kChunkLen ||
OPENSSL_memcmp(buf, "hello", kChunkLen) != 0 ||
SSL_read(server.get(), buf, sizeof(buf)) != 1 ||
buf[0] != '!') {
fprintf(stderr, "Failed to read write retry.\n");
return false;
}
}
return true;
}
static bool ForEachVersion(bool (*test_func)(bool is_dtls,
const SSL_METHOD *method,
uint16_t version)) {
static uint16_t kTLSVersions[] = {
SSL3_VERSION,
TLS1_VERSION,
TLS1_1_VERSION,
TLS1_2_VERSION,
// TLS 1.3 requires RSA-PSS, which is disabled for Android system builds.
#if !defined(BORINGSSL_ANDROID_SYSTEM)
TLS1_3_VERSION,
#endif
};
static uint16_t kDTLSVersions[] = {
DTLS1_VERSION, DTLS1_2_VERSION,
};
for (uint16_t version : kTLSVersions) {
if (!test_func(false, TLS_method(), version)) {
fprintf(stderr, "Test failed at TLS version %04x.\n", version);
return false;
}
}
for (uint16_t version : kDTLSVersions) {
if (!test_func(true, DTLS_method(), version)) {
fprintf(stderr, "Test failed at DTLS version %04x.\n", version);
return false;
}
}
return true;
}
TEST(SSLTest, AddChainCertHack) {
// Ensure that we don't accidently break the hack that we have in place to
// keep curl and serf happy when they use an |X509| even after transfering
// ownership.
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(ctx);
X509 *cert = GetTestCertificate().release();
ASSERT_TRUE(cert);
SSL_CTX_add0_chain_cert(ctx.get(), cert);
// This should not trigger a use-after-free.
X509_cmp(cert, cert);
}
TEST(SSLTest, GetCertificate) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(ctx);
bssl::UniquePtr<X509> cert = GetTestCertificate();
ASSERT_TRUE(cert);
ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get()));
bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
ASSERT_TRUE(ssl);
X509 *cert2 = SSL_CTX_get0_certificate(ctx.get());
ASSERT_TRUE(cert2);
X509 *cert3 = SSL_get_certificate(ssl.get());
ASSERT_TRUE(cert3);
// The old and new certificates must be identical.
EXPECT_EQ(0, X509_cmp(cert.get(), cert2));
EXPECT_EQ(0, X509_cmp(cert.get(), cert3));
uint8_t *der = nullptr;
long der_len = i2d_X509(cert.get(), &der);
ASSERT_LT(0, der_len);
bssl::UniquePtr<uint8_t> free_der(der);
uint8_t *der2 = nullptr;
long der2_len = i2d_X509(cert2, &der2);
ASSERT_LT(0, der2_len);
bssl::UniquePtr<uint8_t> free_der2(der2);
uint8_t *der3 = nullptr;
long der3_len = i2d_X509(cert3, &der3);
ASSERT_LT(0, der3_len);
bssl::UniquePtr<uint8_t> free_der3(der3);
// They must also encode identically.
EXPECT_EQ(Bytes(der, der_len), Bytes(der2, der2_len));
EXPECT_EQ(Bytes(der, der_len), Bytes(der3, der3_len));
}
// TODO(davidben): Convert this file to GTest properly.
TEST(SSLTest, AllTests) {
if (!TestCipherRules() ||
!TestCurveRules() ||
!TestSSL_SESSIONEncoding(kOpenSSLSession) ||
!TestSSL_SESSIONEncoding(kCustomSession) ||
!TestSSL_SESSIONEncoding(kBoringSSLSession) ||
!TestBadSSL_SESSIONEncoding(kBadSessionExtraField) ||
!TestBadSSL_SESSIONEncoding(kBadSessionVersion) ||
!TestBadSSL_SESSIONEncoding(kBadSessionTrailingData) ||
// TODO(svaldez): Update this when TLS 1.3 is enabled by default.
!TestDefaultVersion(SSL3_VERSION, TLS1_2_VERSION, &TLS_method) ||
!TestDefaultVersion(SSL3_VERSION, SSL3_VERSION, &SSLv3_method) ||
!TestDefaultVersion(TLS1_VERSION, TLS1_VERSION, &TLSv1_method) ||
!TestDefaultVersion(TLS1_1_VERSION, TLS1_1_VERSION, &TLSv1_1_method) ||
!TestDefaultVersion(TLS1_2_VERSION, TLS1_2_VERSION, &TLSv1_2_method) ||
!TestDefaultVersion(TLS1_1_VERSION, TLS1_2_VERSION, &DTLS_method) ||
!TestDefaultVersion(TLS1_1_VERSION, TLS1_1_VERSION, &DTLSv1_method) ||
!TestDefaultVersion(TLS1_2_VERSION, TLS1_2_VERSION, &DTLSv1_2_method) ||
!TestCipherGetRFCName() ||
// Test the padding extension at TLS 1.2.
!TestPaddingExtension(TLS1_2_VERSION, TLS1_2_VERSION) ||
// Test the padding extension at TLS 1.3 with a TLS 1.2 session, so there
// will be no PSK binder after the padding extension.
!TestPaddingExtension(TLS1_3_VERSION, TLS1_2_VERSION) ||
// Test the padding extension at TLS 1.3 with a TLS 1.3 session, so there
// will be a PSK binder after the padding extension.
!TestPaddingExtension(TLS1_3_VERSION, TLS1_3_DRAFT_VERSION) ||
!TestInternalSessionCache() ||
!ForEachVersion(TestSequenceNumber) ||
!ForEachVersion(TestOneSidedShutdown) ||
!ForEachVersion(TestGetPeerCertificate) ||
!ForEachVersion(TestRetainOnlySHA256OfCerts) ||
!TestClientHello() ||
!ForEachVersion(TestSessionIDContext) ||
!ForEachVersion(TestSessionTimeout) ||
!ForEachVersion(TestSNICallback) ||
!ForEachVersion(TestVersion) ||
!ForEachVersion(TestALPNCipherAvailable) ||
!ForEachVersion(TestSSLClearSessionResumption) ||
!ForEachVersion(TestAutoChain) ||
!ForEachVersion(TestSSLWriteRetry)) {
ADD_FAILURE() << "Tests failed";
}
}