blob: 37e4684bc5b4f43757c741c2e0ac1d557ca24b8d [file] [log] [blame] [edit]
// Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <openssl/cast.h>
#include <openssl/cipher.h>
#include <openssl/obj.h>
#if defined(OPENSSL_WINDOWS)
#include <intrin.h>
#endif
#include "../../crypto/fipsmodule/cipher/internal.h"
#include "../../crypto/internal.h"
#include "../macros.h"
#include "internal.h"
void CAST_ecb_encrypt(const uint8_t *in, uint8_t *out, const CAST_KEY *ks,
int enc) {
uint32_t d[2];
n2l(in, d[0]);
n2l(in, d[1]);
if (enc) {
CAST_encrypt(d, ks);
} else {
CAST_decrypt(d, ks);
}
l2n(d[0], out);
l2n(d[1], out);
}
#define E_CAST(n, key, L, R, OP1, OP2, OP3) \
{ \
uint32_t a, b, c, d; \
t = (key[n * 2] OP1 R) & 0xffffffff; \
t = CRYPTO_rotl_u32(t, (key[n * 2 + 1])); \
a = CAST_S_table0[(t >> 8) & 0xff]; \
b = CAST_S_table1[(t) & 0xff]; \
c = CAST_S_table2[(t >> 24) & 0xff]; \
d = CAST_S_table3[(t >> 16) & 0xff]; \
L ^= (((((a OP2 b) & 0xffffffffL) OP3 c) & 0xffffffffL) OP1 d) & \
0xffffffffL; \
}
void CAST_encrypt(uint32_t *data, const CAST_KEY *key) {
uint32_t l, r, t;
const uint32_t *k;
k = &key->data[0];
l = data[0];
r = data[1];
E_CAST(0, k, l, r, +, ^, -);
E_CAST(1, k, r, l, ^, -, +);
E_CAST(2, k, l, r, -, +, ^);
E_CAST(3, k, r, l, +, ^, -);
E_CAST(4, k, l, r, ^, -, +);
E_CAST(5, k, r, l, -, +, ^);
E_CAST(6, k, l, r, +, ^, -);
E_CAST(7, k, r, l, ^, -, +);
E_CAST(8, k, l, r, -, +, ^);
E_CAST(9, k, r, l, +, ^, -);
E_CAST(10, k, l, r, ^, -, +);
E_CAST(11, k, r, l, -, +, ^);
if (!key->short_key) {
E_CAST(12, k, l, r, +, ^, -);
E_CAST(13, k, r, l, ^, -, +);
E_CAST(14, k, l, r, -, +, ^);
E_CAST(15, k, r, l, +, ^, -);
}
data[1] = l & 0xffffffffL;
data[0] = r & 0xffffffffL;
}
void CAST_decrypt(uint32_t *data, const CAST_KEY *key) {
uint32_t l, r, t;
const uint32_t *k;
k = &key->data[0];
l = data[0];
r = data[1];
if (!key->short_key) {
E_CAST(15, k, l, r, +, ^, -);
E_CAST(14, k, r, l, -, +, ^);
E_CAST(13, k, l, r, ^, -, +);
E_CAST(12, k, r, l, +, ^, -);
}
E_CAST(11, k, l, r, -, +, ^);
E_CAST(10, k, r, l, ^, -, +);
E_CAST(9, k, l, r, +, ^, -);
E_CAST(8, k, r, l, -, +, ^);
E_CAST(7, k, l, r, ^, -, +);
E_CAST(6, k, r, l, +, ^, -);
E_CAST(5, k, l, r, -, +, ^);
E_CAST(4, k, r, l, ^, -, +);
E_CAST(3, k, l, r, +, ^, -);
E_CAST(2, k, r, l, -, +, ^);
E_CAST(1, k, l, r, ^, -, +);
E_CAST(0, k, r, l, +, ^, -);
data[1] = l & 0xffffffffL;
data[0] = r & 0xffffffffL;
}
void CAST_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
const CAST_KEY *ks, uint8_t *iv, int enc) {
uint32_t tin0, tin1;
uint32_t tout0, tout1, xor0, xor1;
size_t l = length;
uint32_t tin[2];
if (enc) {
n2l(iv, tout0);
n2l(iv, tout1);
iv -= 8;
while (l >= 8) {
n2l(in, tin0);
n2l(in, tin1);
tin0 ^= tout0;
tin1 ^= tout1;
tin[0] = tin0;
tin[1] = tin1;
CAST_encrypt(tin, ks);
tout0 = tin[0];
tout1 = tin[1];
l2n(tout0, out);
l2n(tout1, out);
l -= 8;
}
if (l != 0) {
n2ln(in, tin0, tin1, l);
tin0 ^= tout0;
tin1 ^= tout1;
tin[0] = tin0;
tin[1] = tin1;
CAST_encrypt(tin, ks);
tout0 = tin[0];
tout1 = tin[1];
l2n(tout0, out);
l2n(tout1, out);
}
l2n(tout0, iv);
l2n(tout1, iv);
} else {
n2l(iv, xor0);
n2l(iv, xor1);
iv -= 8;
while (l >= 8) {
n2l(in, tin0);
n2l(in, tin1);
tin[0] = tin0;
tin[1] = tin1;
CAST_decrypt(tin, ks);
tout0 = tin[0] ^ xor0;
tout1 = tin[1] ^ xor1;
l2n(tout0, out);
l2n(tout1, out);
xor0 = tin0;
xor1 = tin1;
l -= 8;
}
if (l != 0) {
n2l(in, tin0);
n2l(in, tin1);
tin[0] = tin0;
tin[1] = tin1;
CAST_decrypt(tin, ks);
tout0 = tin[0] ^ xor0;
tout1 = tin[1] ^ xor1;
l2nn(tout0, tout1, out, l);
xor0 = tin0;
xor1 = tin1;
}
l2n(xor0, iv);
l2n(xor1, iv);
}
tin0 = tin1 = tout0 = tout1 = xor0 = xor1 = 0;
tin[0] = tin[1] = 0;
}
#define CAST_exp(l, A, a, n) \
A[n / 4] = l; \
a[n + 3] = (l) & 0xff; \
a[n + 2] = (l >> 8) & 0xff; \
a[n + 1] = (l >> 16) & 0xff; \
a[n + 0] = (l >> 24) & 0xff;
#define S4 CAST_S_table4
#define S5 CAST_S_table5
#define S6 CAST_S_table6
#define S7 CAST_S_table7
void CAST_set_key(CAST_KEY *key, size_t len, const uint8_t *data) {
uint32_t x[16];
uint32_t z[16];
uint32_t k[32];
uint32_t X[4], Z[4];
uint32_t l, *K;
size_t i;
for (i = 0; i < 16; i++) {
x[i] = 0;
}
if (len > 16) {
len = 16;
}
for (i = 0; i < len; i++) {
x[i] = data[i];
}
if (len <= 10) {
key->short_key = 1;
} else {
key->short_key = 0;
}
K = &k[0];
X[0] = ((x[0] << 24) | (x[1] << 16) | (x[2] << 8) | x[3]) & 0xffffffffL;
X[1] = ((x[4] << 24) | (x[5] << 16) | (x[6] << 8) | x[7]) & 0xffffffffL;
X[2] = ((x[8] << 24) | (x[9] << 16) | (x[10] << 8) | x[11]) & 0xffffffffL;
X[3] = ((x[12] << 24) | (x[13] << 16) | (x[14] << 8) | x[15]) & 0xffffffffL;
for (;;) {
l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]];
CAST_exp(l, Z, z, 0);
l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]];
CAST_exp(l, Z, z, 4);
l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]];
CAST_exp(l, Z, z, 8);
l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]];
CAST_exp(l, Z, z, 12);
K[0] = S4[z[8]] ^ S5[z[9]] ^ S6[z[7]] ^ S7[z[6]] ^ S4[z[2]];
K[1] = S4[z[10]] ^ S5[z[11]] ^ S6[z[5]] ^ S7[z[4]] ^ S5[z[6]];
K[2] = S4[z[12]] ^ S5[z[13]] ^ S6[z[3]] ^ S7[z[2]] ^ S6[z[9]];
K[3] = S4[z[14]] ^ S5[z[15]] ^ S6[z[1]] ^ S7[z[0]] ^ S7[z[12]];
l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]];
CAST_exp(l, X, x, 0);
l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]];
CAST_exp(l, X, x, 4);
l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]];
CAST_exp(l, X, x, 8);
l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]];
CAST_exp(l, X, x, 12);
K[4] = S4[x[3]] ^ S5[x[2]] ^ S6[x[12]] ^ S7[x[13]] ^ S4[x[8]];
K[5] = S4[x[1]] ^ S5[x[0]] ^ S6[x[14]] ^ S7[x[15]] ^ S5[x[13]];
K[6] = S4[x[7]] ^ S5[x[6]] ^ S6[x[8]] ^ S7[x[9]] ^ S6[x[3]];
K[7] = S4[x[5]] ^ S5[x[4]] ^ S6[x[10]] ^ S7[x[11]] ^ S7[x[7]];
l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]];
CAST_exp(l, Z, z, 0);
l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]];
CAST_exp(l, Z, z, 4);
l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]];
CAST_exp(l, Z, z, 8);
l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]];
CAST_exp(l, Z, z, 12);
K[8] = S4[z[3]] ^ S5[z[2]] ^ S6[z[12]] ^ S7[z[13]] ^ S4[z[9]];
K[9] = S4[z[1]] ^ S5[z[0]] ^ S6[z[14]] ^ S7[z[15]] ^ S5[z[12]];
K[10] = S4[z[7]] ^ S5[z[6]] ^ S6[z[8]] ^ S7[z[9]] ^ S6[z[2]];
K[11] = S4[z[5]] ^ S5[z[4]] ^ S6[z[10]] ^ S7[z[11]] ^ S7[z[6]];
l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]];
CAST_exp(l, X, x, 0);
l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]];
CAST_exp(l, X, x, 4);
l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]];
CAST_exp(l, X, x, 8);
l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]];
CAST_exp(l, X, x, 12);
K[12] = S4[x[8]] ^ S5[x[9]] ^ S6[x[7]] ^ S7[x[6]] ^ S4[x[3]];
K[13] = S4[x[10]] ^ S5[x[11]] ^ S6[x[5]] ^ S7[x[4]] ^ S5[x[7]];
K[14] = S4[x[12]] ^ S5[x[13]] ^ S6[x[3]] ^ S7[x[2]] ^ S6[x[8]];
K[15] = S4[x[14]] ^ S5[x[15]] ^ S6[x[1]] ^ S7[x[0]] ^ S7[x[13]];
if (K != k) {
break;
}
K += 16;
}
for (i = 0; i < 16; i++) {
key->data[i * 2] = k[i];
key->data[i * 2 + 1] = ((k[i + 16]) + 16) & 0x1f;
}
}
// The input and output encrypted as though 64bit cfb mode is being used. The
// extra state information to record how much of the 64bit block we have used
// is contained in *num.
void CAST_cfb64_encrypt(const uint8_t *in, uint8_t *out, size_t length,
const CAST_KEY *schedule, uint8_t *ivec, int *num,
int enc) {
uint32_t v0, v1, t;
int n = *num;
size_t l = length;
uint32_t ti[2];
uint8_t *iv, c, cc;
iv = ivec;
if (enc) {
while (l--) {
if (n == 0) {
n2l(iv, v0);
ti[0] = v0;
n2l(iv, v1);
ti[1] = v1;
CAST_encrypt((uint32_t *)ti, schedule);
iv = ivec;
t = ti[0];
l2n(t, iv);
t = ti[1];
l2n(t, iv);
iv = ivec;
}
c = *(in++) ^ iv[n];
*(out++) = c;
iv[n] = c;
n = (n + 1) & 0x07;
}
} else {
while (l--) {
if (n == 0) {
n2l(iv, v0);
ti[0] = v0;
n2l(iv, v1);
ti[1] = v1;
CAST_encrypt((uint32_t *)ti, schedule);
iv = ivec;
t = ti[0];
l2n(t, iv);
t = ti[1];
l2n(t, iv);
iv = ivec;
}
cc = *(in++);
c = iv[n];
iv[n] = cc;
*(out++) = c ^ cc;
n = (n + 1) & 0x07;
}
}
v0 = v1 = ti[0] = ti[1] = t = c = cc = 0;
*num = n;
}
static int cast_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
const uint8_t *iv, int enc) {
CAST_KEY *cast_key = reinterpret_cast<CAST_KEY *>(ctx->cipher_data);
CAST_set_key(cast_key, ctx->key_len, key);
return 1;
}
static int cast_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
size_t len) {
CAST_KEY *cast_key = reinterpret_cast<CAST_KEY *>(ctx->cipher_data);
while (len >= CAST_BLOCK) {
CAST_ecb_encrypt(in, out, cast_key, ctx->encrypt);
in += CAST_BLOCK;
out += CAST_BLOCK;
len -= CAST_BLOCK;
}
assert(len == 0);
return 1;
}
static int cast_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
size_t len) {
CAST_KEY *cast_key = reinterpret_cast<CAST_KEY *>(ctx->cipher_data);
CAST_cbc_encrypt(in, out, len, cast_key, ctx->iv, ctx->encrypt);
return 1;
}
static const EVP_CIPHER cast5_ecb = {
/* nid= */ NID_cast5_ecb,
/* block_size= */ CAST_BLOCK,
/* key_len= */ CAST_KEY_LENGTH,
/* iv_len= */ CAST_BLOCK,
/* ctx_size= */ sizeof(CAST_KEY),
/* flags= */ EVP_CIPH_ECB_MODE | EVP_CIPH_VARIABLE_LENGTH,
/* init= */ cast_init_key,
/* cipher= */ cast_ecb_cipher,
/* cleanup= */ nullptr,
/* ctrl= */ nullptr,
};
static const EVP_CIPHER cast5_cbc = {
/* nid= */ NID_cast5_cbc,
/* block_size= */ CAST_BLOCK,
/* key_len= */ CAST_KEY_LENGTH,
/* iv_len= */ CAST_BLOCK,
/* ctx_size= */ sizeof(CAST_KEY),
/* flags= */ EVP_CIPH_CBC_MODE | EVP_CIPH_VARIABLE_LENGTH,
/* init= */ cast_init_key,
/* cipher= */ cast_cbc_cipher,
/* cleanup= */ nullptr,
/* ctrl= */ nullptr,
};
const EVP_CIPHER *EVP_cast5_ecb(void) { return &cast5_ecb; }
const EVP_CIPHER *EVP_cast5_cbc(void) { return &cast5_cbc; }