| // Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include <assert.h> |
| #include <errno.h> |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include <openssl/base64.h> |
| #include <openssl/bio.h> |
| #include <openssl/buffer.h> |
| #include <openssl/evp.h> |
| #include <openssl/mem.h> |
| |
| #include "../../crypto/internal.h" |
| |
| |
| #define B64_BLOCK_SIZE 1024 |
| #define B64_BLOCK_SIZE2 768 |
| #define B64_NONE 0 |
| #define B64_ENCODE 1 |
| #define B64_DECODE 2 |
| #define EVP_ENCODE_LENGTH(l) (((l + 2) / 3 * 4) + (l / 48 + 1) * 2 + 80) |
| |
| typedef struct b64_struct { |
| int buf_len; |
| int buf_off; |
| int tmp_len; // used to find the start when decoding |
| int tmp_nl; // If true, scan until '\n' |
| int encode; |
| int start; // have we started decoding yet? |
| int cont; // <= 0 when finished |
| EVP_ENCODE_CTX base64; |
| char buf[EVP_ENCODE_LENGTH(B64_BLOCK_SIZE) + 10]; |
| char tmp[B64_BLOCK_SIZE]; |
| } BIO_B64_CTX; |
| |
| static int b64_new(BIO *bio) { |
| BIO_B64_CTX *ctx = |
| reinterpret_cast<BIO_B64_CTX *>(OPENSSL_zalloc(sizeof(*ctx))); |
| if (ctx == NULL) { |
| return 0; |
| } |
| |
| ctx->cont = 1; |
| ctx->start = 1; |
| |
| bio->init = 1; |
| bio->ptr = (char *)ctx; |
| return 1; |
| } |
| |
| static int b64_free(BIO *bio) { |
| if (bio == NULL) { |
| return 0; |
| } |
| OPENSSL_free(bio->ptr); |
| bio->ptr = NULL; |
| bio->init = 0; |
| bio->flags = 0; |
| return 1; |
| } |
| |
| static int b64_read(BIO *b, char *out, int outl) { |
| int ret = 0, i, ii, j, k, x, n, num, ret_code = 0; |
| BIO_B64_CTX *ctx; |
| uint8_t *p, *q; |
| |
| if (out == NULL) { |
| return 0; |
| } |
| ctx = (BIO_B64_CTX *)b->ptr; |
| |
| if (ctx == NULL || b->next_bio == NULL) { |
| return 0; |
| } |
| |
| BIO_clear_retry_flags(b); |
| |
| if (ctx->encode != B64_DECODE) { |
| ctx->encode = B64_DECODE; |
| ctx->buf_len = 0; |
| ctx->buf_off = 0; |
| ctx->tmp_len = 0; |
| EVP_DecodeInit(&ctx->base64); |
| } |
| |
| // First check if there are bytes decoded/encoded |
| if (ctx->buf_len > 0) { |
| assert(ctx->buf_len >= ctx->buf_off); |
| i = ctx->buf_len - ctx->buf_off; |
| if (i > outl) { |
| i = outl; |
| } |
| assert(ctx->buf_off + i < (int)sizeof(ctx->buf)); |
| OPENSSL_memcpy(out, &ctx->buf[ctx->buf_off], i); |
| ret = i; |
| out += i; |
| outl -= i; |
| ctx->buf_off += i; |
| if (ctx->buf_len == ctx->buf_off) { |
| ctx->buf_len = 0; |
| ctx->buf_off = 0; |
| } |
| } |
| |
| // At this point, we have room of outl bytes and an empty buffer, so we |
| // should read in some more. |
| |
| ret_code = 0; |
| while (outl > 0) { |
| if (ctx->cont <= 0) { |
| break; |
| } |
| |
| i = BIO_read(b->next_bio, &(ctx->tmp[ctx->tmp_len]), |
| B64_BLOCK_SIZE - ctx->tmp_len); |
| |
| if (i <= 0) { |
| ret_code = i; |
| |
| // Should we continue next time we are called? |
| if (!BIO_should_retry(b->next_bio)) { |
| ctx->cont = i; |
| // If buffer empty break |
| if (ctx->tmp_len == 0) { |
| break; |
| } else { |
| // Fall through and process what we have |
| i = 0; |
| } |
| } else { |
| // else we retry and add more data to buffer |
| break; |
| } |
| } |
| i += ctx->tmp_len; |
| ctx->tmp_len = i; |
| |
| // We need to scan, a line at a time until we have a valid line if we are |
| // starting. |
| if (ctx->start && (BIO_test_flags(b, BIO_FLAGS_BASE64_NO_NL))) { |
| // ctx->start = 1; |
| ctx->tmp_len = 0; |
| } else if (ctx->start) { |
| q = p = (uint8_t *)ctx->tmp; |
| num = 0; |
| for (j = 0; j < i; j++) { |
| if (*(q++) != '\n') { |
| continue; |
| } |
| |
| // due to a previous very long line, we need to keep on scanning for a |
| // '\n' before we even start looking for base64 encoded stuff. |
| if (ctx->tmp_nl) { |
| p = q; |
| ctx->tmp_nl = 0; |
| continue; |
| } |
| |
| k = EVP_DecodeUpdate(&(ctx->base64), (uint8_t *)ctx->buf, &num, p, |
| q - p); |
| |
| if (k <= 0 && num == 0 && ctx->start) { |
| EVP_DecodeInit(&ctx->base64); |
| } else { |
| if (p != (uint8_t *)&(ctx->tmp[0])) { |
| i -= (p - (uint8_t *)&(ctx->tmp[0])); |
| for (x = 0; x < i; x++) { |
| ctx->tmp[x] = p[x]; |
| } |
| } |
| EVP_DecodeInit(&ctx->base64); |
| ctx->start = 0; |
| break; |
| } |
| p = q; |
| } |
| |
| // we fell off the end without starting |
| if (j == i && num == 0) { |
| // Is this is one long chunk?, if so, keep on reading until a new |
| // line. |
| if (p == (uint8_t *)&(ctx->tmp[0])) { |
| // Check buffer full |
| if (i == B64_BLOCK_SIZE) { |
| ctx->tmp_nl = 1; |
| ctx->tmp_len = 0; |
| } |
| } else if (p != q) { // finished on a '\n' |
| n = q - p; |
| for (ii = 0; ii < n; ii++) { |
| ctx->tmp[ii] = p[ii]; |
| } |
| ctx->tmp_len = n; |
| } |
| // else finished on a '\n' |
| continue; |
| } else { |
| ctx->tmp_len = 0; |
| } |
| } else if (i < B64_BLOCK_SIZE && ctx->cont > 0) { |
| // If buffer isn't full and we can retry then restart to read in more |
| // data. |
| continue; |
| } |
| |
| if (BIO_test_flags(b, BIO_FLAGS_BASE64_NO_NL)) { |
| int z, jj; |
| |
| jj = i & ~3; // process per 4 |
| z = EVP_DecodeBlock((uint8_t *)ctx->buf, (uint8_t *)ctx->tmp, jj); |
| if (jj > 2) { |
| if (ctx->tmp[jj - 1] == '=') { |
| z--; |
| if (ctx->tmp[jj - 2] == '=') { |
| z--; |
| } |
| } |
| } |
| // z is now number of output bytes and jj is the number consumed. |
| if (jj != i) { |
| OPENSSL_memmove(ctx->tmp, &ctx->tmp[jj], i - jj); |
| ctx->tmp_len = i - jj; |
| } |
| ctx->buf_len = 0; |
| if (z > 0) { |
| ctx->buf_len = z; |
| } |
| i = z; |
| } else { |
| i = EVP_DecodeUpdate(&(ctx->base64), (uint8_t *)ctx->buf, &ctx->buf_len, |
| (uint8_t *)ctx->tmp, i); |
| ctx->tmp_len = 0; |
| } |
| ctx->buf_off = 0; |
| if (i < 0) { |
| ret_code = 0; |
| ctx->buf_len = 0; |
| break; |
| } |
| |
| if (ctx->buf_len <= outl) { |
| i = ctx->buf_len; |
| } else { |
| i = outl; |
| } |
| |
| OPENSSL_memcpy(out, ctx->buf, i); |
| ret += i; |
| ctx->buf_off = i; |
| if (ctx->buf_off == ctx->buf_len) { |
| ctx->buf_len = 0; |
| ctx->buf_off = 0; |
| } |
| outl -= i; |
| out += i; |
| } |
| |
| BIO_copy_next_retry(b); |
| return ret == 0 ? ret_code : ret; |
| } |
| |
| static int b64_write(BIO *b, const char *in, int inl) { |
| int ret = 0, n, i; |
| BIO_B64_CTX *ctx; |
| |
| ctx = (BIO_B64_CTX *)b->ptr; |
| BIO_clear_retry_flags(b); |
| |
| if (ctx->encode != B64_ENCODE) { |
| ctx->encode = B64_ENCODE; |
| ctx->buf_len = 0; |
| ctx->buf_off = 0; |
| ctx->tmp_len = 0; |
| EVP_EncodeInit(&(ctx->base64)); |
| } |
| |
| assert(ctx->buf_off < (int)sizeof(ctx->buf)); |
| assert(ctx->buf_len <= (int)sizeof(ctx->buf)); |
| assert(ctx->buf_len >= ctx->buf_off); |
| |
| n = ctx->buf_len - ctx->buf_off; |
| while (n > 0) { |
| i = BIO_write(b->next_bio, &(ctx->buf[ctx->buf_off]), n); |
| if (i <= 0) { |
| BIO_copy_next_retry(b); |
| return i; |
| } |
| assert(i <= n); |
| ctx->buf_off += i; |
| assert(ctx->buf_off <= (int)sizeof(ctx->buf)); |
| assert(ctx->buf_len >= ctx->buf_off); |
| n -= i; |
| } |
| |
| // at this point all pending data has been written. |
| ctx->buf_off = 0; |
| ctx->buf_len = 0; |
| |
| if (in == NULL || inl <= 0) { |
| return 0; |
| } |
| |
| while (inl > 0) { |
| n = (inl > B64_BLOCK_SIZE) ? B64_BLOCK_SIZE : inl; |
| |
| if (BIO_test_flags(b, BIO_FLAGS_BASE64_NO_NL)) { |
| if (ctx->tmp_len > 0) { |
| assert(ctx->tmp_len <= 3); |
| n = 3 - ctx->tmp_len; |
| // There's a theoretical possibility of this. |
| if (n > inl) { |
| n = inl; |
| } |
| OPENSSL_memcpy(&(ctx->tmp[ctx->tmp_len]), in, n); |
| ctx->tmp_len += n; |
| ret += n; |
| if (ctx->tmp_len < 3) { |
| break; |
| } |
| ctx->buf_len = EVP_EncodeBlock((uint8_t *)ctx->buf, (uint8_t *)ctx->tmp, |
| ctx->tmp_len); |
| assert(ctx->buf_len <= (int)sizeof(ctx->buf)); |
| assert(ctx->buf_len >= ctx->buf_off); |
| |
| // Since we're now done using the temporary buffer, the length should |
| // be zeroed. |
| ctx->tmp_len = 0; |
| } else { |
| if (n < 3) { |
| OPENSSL_memcpy(ctx->tmp, in, n); |
| ctx->tmp_len = n; |
| ret += n; |
| break; |
| } |
| n -= n % 3; |
| ctx->buf_len = |
| EVP_EncodeBlock((uint8_t *)ctx->buf, (const uint8_t *)in, n); |
| assert(ctx->buf_len <= (int)sizeof(ctx->buf)); |
| assert(ctx->buf_len >= ctx->buf_off); |
| ret += n; |
| } |
| } else { |
| EVP_EncodeUpdate(&(ctx->base64), (uint8_t *)ctx->buf, &ctx->buf_len, |
| (uint8_t *)in, n); |
| assert(ctx->buf_len <= (int)sizeof(ctx->buf)); |
| assert(ctx->buf_len >= ctx->buf_off); |
| ret += n; |
| } |
| inl -= n; |
| in += n; |
| |
| ctx->buf_off = 0; |
| n = ctx->buf_len; |
| |
| while (n > 0) { |
| i = BIO_write(b->next_bio, &(ctx->buf[ctx->buf_off]), n); |
| if (i <= 0) { |
| BIO_copy_next_retry(b); |
| return ret == 0 ? i : ret; |
| } |
| assert(i <= n); |
| n -= i; |
| ctx->buf_off += i; |
| assert(ctx->buf_off <= (int)sizeof(ctx->buf)); |
| assert(ctx->buf_len >= ctx->buf_off); |
| } |
| ctx->buf_len = 0; |
| ctx->buf_off = 0; |
| } |
| return ret; |
| } |
| |
| static long b64_ctrl(BIO *b, int cmd, long num, void *ptr) { |
| BIO_B64_CTX *ctx; |
| long ret = 1; |
| int i; |
| |
| ctx = (BIO_B64_CTX *)b->ptr; |
| |
| switch (cmd) { |
| case BIO_CTRL_RESET: |
| ctx->cont = 1; |
| ctx->start = 1; |
| ctx->encode = B64_NONE; |
| ret = BIO_ctrl(b->next_bio, cmd, num, ptr); |
| break; |
| |
| case BIO_CTRL_EOF: // More to read |
| if (ctx->cont <= 0) { |
| ret = 1; |
| } else { |
| ret = BIO_ctrl(b->next_bio, cmd, num, ptr); |
| } |
| break; |
| |
| case BIO_CTRL_WPENDING: // More to write in buffer |
| assert(ctx->buf_len >= ctx->buf_off); |
| ret = ctx->buf_len - ctx->buf_off; |
| if ((ret == 0) && (ctx->encode != B64_NONE) && |
| (ctx->base64.data_used != 0)) { |
| ret = 1; |
| } else if (ret <= 0) { |
| ret = BIO_ctrl(b->next_bio, cmd, num, ptr); |
| } |
| break; |
| |
| case BIO_CTRL_PENDING: // More to read in buffer |
| assert(ctx->buf_len >= ctx->buf_off); |
| ret = ctx->buf_len - ctx->buf_off; |
| if (ret <= 0) { |
| ret = BIO_ctrl(b->next_bio, cmd, num, ptr); |
| } |
| break; |
| |
| case BIO_CTRL_FLUSH: |
| // do a final write |
| again: |
| while (ctx->buf_len != ctx->buf_off) { |
| i = b64_write(b, NULL, 0); |
| if (i < 0) { |
| return i; |
| } |
| } |
| if (BIO_test_flags(b, BIO_FLAGS_BASE64_NO_NL)) { |
| if (ctx->tmp_len != 0) { |
| ctx->buf_len = EVP_EncodeBlock((uint8_t *)ctx->buf, |
| (uint8_t *)ctx->tmp, ctx->tmp_len); |
| ctx->buf_off = 0; |
| ctx->tmp_len = 0; |
| goto again; |
| } |
| } else if (ctx->encode != B64_NONE && ctx->base64.data_used != 0) { |
| ctx->buf_off = 0; |
| EVP_EncodeFinal(&(ctx->base64), (uint8_t *)ctx->buf, &(ctx->buf_len)); |
| // push out the bytes |
| goto again; |
| } |
| // Finally flush the underlying BIO |
| ret = BIO_ctrl(b->next_bio, cmd, num, ptr); |
| break; |
| |
| case BIO_C_DO_STATE_MACHINE: |
| BIO_clear_retry_flags(b); |
| ret = BIO_ctrl(b->next_bio, cmd, num, ptr); |
| BIO_copy_next_retry(b); |
| break; |
| |
| case BIO_CTRL_INFO: |
| case BIO_CTRL_GET: |
| case BIO_CTRL_SET: |
| default: |
| ret = BIO_ctrl(b->next_bio, cmd, num, ptr); |
| break; |
| } |
| return ret; |
| } |
| |
| static long b64_callback_ctrl(BIO *b, int cmd, bio_info_cb fp) { |
| if (b->next_bio == NULL) { |
| return 0; |
| } |
| return BIO_callback_ctrl(b->next_bio, cmd, fp); |
| } |
| |
| static const BIO_METHOD b64_method = { |
| BIO_TYPE_BASE64, "base64 encoding", b64_write, b64_read, NULL /* puts */, |
| NULL /* gets */, b64_ctrl, b64_new, b64_free, b64_callback_ctrl, |
| }; |
| |
| const BIO_METHOD *BIO_f_base64(void) { return &b64_method; } |