| // Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include <openssl/pkcs8.h> |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <string.h> |
| |
| #include <openssl/bytestring.h> |
| #include <openssl/cipher.h> |
| #include <openssl/digest.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/nid.h> |
| #include <openssl/rand.h> |
| |
| #include "../bytestring/internal.h" |
| #include "../internal.h" |
| #include "internal.h" |
| |
| |
| static int pkcs12_encode_password(const char *in, size_t in_len, uint8_t **out, |
| size_t *out_len) { |
| bssl::ScopedCBB cbb; |
| if (!CBB_init(cbb.get(), in_len * 2)) { |
| return 0; |
| } |
| |
| // Convert the password to BMPString, or UCS-2. See |
| // https://tools.ietf.org/html/rfc7292#appendix-B.1. |
| CBS cbs; |
| CBS_init(&cbs, (const uint8_t *)in, in_len); |
| while (CBS_len(&cbs) != 0) { |
| uint32_t c; |
| if (!CBS_get_utf8(&cbs, &c) || !CBB_add_ucs2_be(cbb.get(), c)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS); |
| return 0; |
| } |
| } |
| |
| // Terminate the result with a UCS-2 NUL. |
| if (!CBB_add_ucs2_be(cbb.get(), 0) || !CBB_finish(cbb.get(), out, out_len)) { |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| int pkcs12_key_gen(const char *pass, size_t pass_len, const uint8_t *salt, |
| size_t salt_len, uint8_t id, uint32_t iterations, |
| size_t out_len, uint8_t *out, const EVP_MD *md) { |
| // See https://tools.ietf.org/html/rfc7292#appendix-B. Quoted parts of the |
| // specification have errata applied and other typos fixed. |
| |
| if (iterations < 1) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT); |
| return 0; |
| } |
| |
| int ret = 0; |
| EVP_MD_CTX ctx; |
| EVP_MD_CTX_init(&ctx); |
| uint8_t *pass_raw = NULL, *I = NULL; |
| size_t pass_raw_len = 0, I_len = 0; |
| |
| { |
| // If |pass| is NULL, we use the empty string rather than {0, 0} as the raw |
| // password. |
| if (pass != NULL && |
| !pkcs12_encode_password(pass, pass_len, &pass_raw, &pass_raw_len)) { |
| goto err; |
| } |
| |
| // In the spec, |block_size| is called "v", but measured in bits. |
| size_t block_size = EVP_MD_block_size(md); |
| |
| // 1. Construct a string, D (the "diversifier"), by concatenating v/8 copies |
| // of ID. |
| uint8_t D[EVP_MAX_MD_BLOCK_SIZE]; |
| OPENSSL_memset(D, id, block_size); |
| |
| // 2. Concatenate copies of the salt together to create a string S of length |
| // v(ceiling(s/v)) bits (the final copy of the salt may be truncated to |
| // create S). Note that if the salt is the empty string, then so is S. |
| // |
| // 3. Concatenate copies of the password together to create a string P of |
| // length v(ceiling(p/v)) bits (the final copy of the password may be |
| // truncated to create P). Note that if the password is the empty string, |
| // then so is P. |
| // |
| // 4. Set I=S||P to be the concatenation of S and P. |
| if (salt_len + block_size - 1 < salt_len || |
| pass_raw_len + block_size - 1 < pass_raw_len) { |
| OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW); |
| goto err; |
| } |
| size_t S_len = block_size * ((salt_len + block_size - 1) / block_size); |
| size_t P_len = block_size * ((pass_raw_len + block_size - 1) / block_size); |
| I_len = S_len + P_len; |
| if (I_len < S_len) { |
| OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW); |
| goto err; |
| } |
| |
| I = reinterpret_cast<uint8_t *>(OPENSSL_malloc(I_len)); |
| if (I_len != 0 && I == NULL) { |
| goto err; |
| } |
| |
| for (size_t i = 0; i < S_len; i++) { |
| I[i] = salt[i % salt_len]; |
| } |
| for (size_t i = 0; i < P_len; i++) { |
| I[i + S_len] = pass_raw[i % pass_raw_len]; |
| } |
| |
| while (out_len != 0) { |
| // A. Set A_i=H^r(D||I). (i.e., the r-th hash of D||I, |
| // H(H(H(... H(D||I)))) |
| uint8_t A[EVP_MAX_MD_SIZE]; |
| unsigned A_len; |
| if (!EVP_DigestInit_ex(&ctx, md, NULL) || |
| !EVP_DigestUpdate(&ctx, D, block_size) || |
| !EVP_DigestUpdate(&ctx, I, I_len) || |
| !EVP_DigestFinal_ex(&ctx, A, &A_len)) { |
| goto err; |
| } |
| for (uint32_t iter = 1; iter < iterations; iter++) { |
| if (!EVP_DigestInit_ex(&ctx, md, NULL) || |
| !EVP_DigestUpdate(&ctx, A, A_len) || |
| !EVP_DigestFinal_ex(&ctx, A, &A_len)) { |
| goto err; |
| } |
| } |
| |
| size_t todo = out_len < A_len ? out_len : A_len; |
| OPENSSL_memcpy(out, A, todo); |
| out += todo; |
| out_len -= todo; |
| if (out_len == 0) { |
| break; |
| } |
| |
| // B. Concatenate copies of A_i to create a string B of length v bits (the |
| // final copy of A_i may be truncated to create B). |
| uint8_t B[EVP_MAX_MD_BLOCK_SIZE]; |
| for (size_t i = 0; i < block_size; i++) { |
| B[i] = A[i % A_len]; |
| } |
| |
| // C. Treating I as a concatenation I_0, I_1, ..., I_(k-1) of v-bit |
| // blocks, where k=ceiling(s/v)+ceiling(p/v), modify I by setting |
| // I_j=(I_j+B+1) mod 2^v for each j. |
| assert(I_len % block_size == 0); |
| for (size_t i = 0; i < I_len; i += block_size) { |
| unsigned carry = 1; |
| for (size_t j = block_size - 1; j < block_size; j--) { |
| carry += I[i + j] + B[j]; |
| I[i + j] = (uint8_t)carry; |
| carry >>= 8; |
| } |
| } |
| } |
| |
| ret = 1; |
| } |
| |
| err: |
| OPENSSL_free(I); |
| OPENSSL_free(pass_raw); |
| EVP_MD_CTX_cleanup(&ctx); |
| return ret; |
| } |
| |
| static int pkcs12_pbe_cipher_init(const struct pbe_suite *suite, |
| EVP_CIPHER_CTX *ctx, uint32_t iterations, |
| const char *pass, size_t pass_len, |
| const uint8_t *salt, size_t salt_len, |
| int is_encrypt) { |
| const EVP_CIPHER *cipher = suite->cipher_func(); |
| const EVP_MD *md = suite->md_func(); |
| |
| uint8_t key[EVP_MAX_KEY_LENGTH]; |
| uint8_t iv[EVP_MAX_IV_LENGTH]; |
| if (!pkcs12_key_gen(pass, pass_len, salt, salt_len, PKCS12_KEY_ID, iterations, |
| EVP_CIPHER_key_length(cipher), key, md) || |
| !pkcs12_key_gen(pass, pass_len, salt, salt_len, PKCS12_IV_ID, iterations, |
| EVP_CIPHER_iv_length(cipher), iv, md)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_KEY_GEN_ERROR); |
| return 0; |
| } |
| |
| int ret = EVP_CipherInit_ex(ctx, cipher, NULL, key, iv, is_encrypt); |
| OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH); |
| OPENSSL_cleanse(iv, EVP_MAX_IV_LENGTH); |
| return ret; |
| } |
| |
| static int pkcs12_pbe_decrypt_init(const struct pbe_suite *suite, |
| EVP_CIPHER_CTX *ctx, const char *pass, |
| size_t pass_len, CBS *param) { |
| CBS pbe_param, salt; |
| uint64_t iterations; |
| if (!CBS_get_asn1(param, &pbe_param, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1(&pbe_param, &salt, CBS_ASN1_OCTETSTRING) || |
| !CBS_get_asn1_uint64(&pbe_param, &iterations) || |
| CBS_len(&pbe_param) != 0 || CBS_len(param) != 0) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
| return 0; |
| } |
| |
| if (!pkcs12_iterations_acceptable(iterations)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT); |
| return 0; |
| } |
| |
| return pkcs12_pbe_cipher_init(suite, ctx, (uint32_t)iterations, pass, |
| pass_len, CBS_data(&salt), CBS_len(&salt), |
| 0 /* decrypt */); |
| } |
| |
| static const struct pbe_suite kBuiltinPBE[] = { |
| { |
| NID_pbe_WithSHA1And40BitRC2_CBC, |
| // 1.2.840.113549.1.12.1.6 |
| {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x06}, |
| 10, |
| EVP_rc2_40_cbc, |
| EVP_sha1, |
| pkcs12_pbe_decrypt_init, |
| }, |
| { |
| NID_pbe_WithSHA1And128BitRC4, |
| // 1.2.840.113549.1.12.1.1 |
| {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x01}, |
| 10, |
| EVP_rc4, |
| EVP_sha1, |
| pkcs12_pbe_decrypt_init, |
| }, |
| { |
| NID_pbe_WithSHA1And3_Key_TripleDES_CBC, |
| // 1.2.840.113549.1.12.1.3 |
| {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x01, 0x03}, |
| 10, |
| EVP_des_ede3_cbc, |
| EVP_sha1, |
| pkcs12_pbe_decrypt_init, |
| }, |
| { |
| NID_pbes2, |
| // 1.2.840.113549.1.5.13 |
| {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x05, 0x0d}, |
| 9, |
| NULL, |
| NULL, |
| PKCS5_pbe2_decrypt_init, |
| }, |
| }; |
| |
| static const struct pbe_suite *get_pkcs12_pbe_suite(int pbe_nid) { |
| for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kBuiltinPBE); i++) { |
| if (kBuiltinPBE[i].pbe_nid == pbe_nid && |
| // If |cipher_func| or |md_func| are missing, this is a PBES2 scheme. |
| kBuiltinPBE[i].cipher_func != NULL && kBuiltinPBE[i].md_func != NULL) { |
| return &kBuiltinPBE[i]; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| int pkcs12_pbe_encrypt_init(CBB *out, EVP_CIPHER_CTX *ctx, int alg_nid, |
| const EVP_CIPHER *alg_cipher, uint32_t iterations, |
| const char *pass, size_t pass_len, |
| const uint8_t *salt, size_t salt_len) { |
| // TODO(davidben): OpenSSL has since extended |pbe_nid| to control either |
| // the PBES1 scheme or the PBES2 PRF. E.g. passing |NID_hmacWithSHA256| will |
| // select PBES2 with HMAC-SHA256 as the PRF. Implement this if anything uses |
| // it. See 5693a30813a031d3921a016a870420e7eb93ec90 in OpenSSL. |
| if (alg_nid == -1) { |
| return PKCS5_pbe2_encrypt_init(out, ctx, alg_cipher, iterations, pass, |
| pass_len, salt, salt_len); |
| } |
| |
| const struct pbe_suite *suite = get_pkcs12_pbe_suite(alg_nid); |
| if (suite == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNKNOWN_ALGORITHM); |
| return 0; |
| } |
| |
| // See RFC 2898, appendix A.3. |
| CBB algorithm, param; |
| if (!CBB_add_asn1(out, &algorithm, CBS_ASN1_SEQUENCE) || |
| !CBB_add_asn1_element(&algorithm, CBS_ASN1_OBJECT, suite->oid, |
| suite->oid_len) || |
| !CBB_add_asn1(&algorithm, ¶m, CBS_ASN1_SEQUENCE) || |
| !CBB_add_asn1_octet_string(¶m, salt, salt_len) || |
| !CBB_add_asn1_uint64(¶m, iterations) || !CBB_flush(out)) { |
| return 0; |
| } |
| |
| return pkcs12_pbe_cipher_init(suite, ctx, iterations, pass, pass_len, salt, |
| salt_len, 1 /* encrypt */); |
| } |
| |
| int pkcs8_pbe_decrypt(uint8_t **out, size_t *out_len, CBS *algorithm, |
| const char *pass, size_t pass_len, const uint8_t *in, |
| size_t in_len) { |
| int ret = 0; |
| uint8_t *buf = NULL; |
| bssl::ScopedEVP_CIPHER_CTX ctx; |
| |
| CBS obj; |
| const struct pbe_suite *suite = NULL; |
| if (!CBS_get_asn1(algorithm, &obj, CBS_ASN1_OBJECT)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
| goto err; |
| } |
| |
| for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kBuiltinPBE); i++) { |
| if (CBS_mem_equal(&obj, kBuiltinPBE[i].oid, kBuiltinPBE[i].oid_len)) { |
| suite = &kBuiltinPBE[i]; |
| break; |
| } |
| } |
| if (suite == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNKNOWN_ALGORITHM); |
| goto err; |
| } |
| |
| if (!suite->decrypt_init(suite, ctx.get(), pass, pass_len, algorithm)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_KEYGEN_FAILURE); |
| goto err; |
| } |
| |
| buf = reinterpret_cast<uint8_t *>(OPENSSL_malloc(in_len)); |
| if (buf == NULL) { |
| goto err; |
| } |
| |
| if (in_len > INT_MAX) { |
| OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW); |
| goto err; |
| } |
| |
| int n1, n2; |
| if (!EVP_DecryptUpdate(ctx.get(), buf, &n1, in, (int)in_len) || |
| !EVP_DecryptFinal_ex(ctx.get(), buf + n1, &n2)) { |
| goto err; |
| } |
| |
| *out = buf; |
| *out_len = n1 + n2; |
| ret = 1; |
| buf = NULL; |
| |
| err: |
| OPENSSL_free(buf); |
| return ret; |
| } |
| |
| EVP_PKEY *PKCS8_parse_encrypted_private_key(CBS *cbs, const char *pass, |
| size_t pass_len) { |
| // See RFC 5208, section 6. |
| CBS epki, algorithm, ciphertext; |
| if (!CBS_get_asn1(cbs, &epki, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1(&epki, &algorithm, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1(&epki, &ciphertext, CBS_ASN1_OCTETSTRING) || |
| CBS_len(&epki) != 0) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
| return 0; |
| } |
| |
| uint8_t *out; |
| size_t out_len; |
| if (!pkcs8_pbe_decrypt(&out, &out_len, &algorithm, pass, pass_len, |
| CBS_data(&ciphertext), CBS_len(&ciphertext))) { |
| return 0; |
| } |
| |
| CBS pki; |
| CBS_init(&pki, out, out_len); |
| EVP_PKEY *ret = EVP_parse_private_key(&pki); |
| OPENSSL_free(out); |
| return ret; |
| } |
| |
| int PKCS8_marshal_encrypted_private_key(CBB *out, int pbe_nid, |
| const EVP_CIPHER *cipher, |
| const char *pass, size_t pass_len, |
| const uint8_t *salt, size_t salt_len, |
| int iterations, const EVP_PKEY *pkey) { |
| int ret = 0; |
| uint8_t *plaintext = NULL, *salt_buf = NULL; |
| size_t plaintext_len = 0; |
| bssl::ScopedEVP_CIPHER_CTX ctx; |
| |
| { |
| // Generate a random salt if necessary. |
| if (salt == NULL) { |
| if (salt_len == 0) { |
| salt_len = PKCS5_SALT_LEN; |
| } |
| |
| salt_buf = reinterpret_cast<uint8_t *>(OPENSSL_malloc(salt_len)); |
| if (salt_buf == NULL || !RAND_bytes(salt_buf, salt_len)) { |
| goto err; |
| } |
| |
| salt = salt_buf; |
| } |
| |
| if (iterations <= 0) { |
| iterations = PKCS12_DEFAULT_ITER; |
| } |
| |
| // Serialize the input key. |
| CBB plaintext_cbb; |
| if (!CBB_init(&plaintext_cbb, 128) || |
| !EVP_marshal_private_key(&plaintext_cbb, pkey) || |
| !CBB_finish(&plaintext_cbb, &plaintext, &plaintext_len)) { |
| CBB_cleanup(&plaintext_cbb); |
| goto err; |
| } |
| |
| CBB epki; |
| if (!CBB_add_asn1(out, &epki, CBS_ASN1_SEQUENCE) || |
| !pkcs12_pbe_encrypt_init(&epki, ctx.get(), pbe_nid, cipher, |
| (uint32_t)iterations, pass, pass_len, salt, |
| salt_len)) { |
| goto err; |
| } |
| |
| size_t max_out = plaintext_len + EVP_CIPHER_CTX_block_size(ctx.get()); |
| if (max_out < plaintext_len) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_TOO_LONG); |
| goto err; |
| } |
| |
| CBB ciphertext; |
| uint8_t *ptr; |
| int n1, n2; |
| if (!CBB_add_asn1(&epki, &ciphertext, CBS_ASN1_OCTETSTRING) || |
| !CBB_reserve(&ciphertext, &ptr, max_out) || |
| !EVP_CipherUpdate(ctx.get(), ptr, &n1, plaintext, plaintext_len) || |
| !EVP_CipherFinal_ex(ctx.get(), ptr + n1, &n2) || |
| !CBB_did_write(&ciphertext, n1 + n2) || !CBB_flush(out)) { |
| goto err; |
| } |
| |
| ret = 1; |
| } |
| |
| err: |
| OPENSSL_free(plaintext); |
| OPENSSL_free(salt_buf); |
| return ret; |
| } |