| // Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // https://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include <openssl/pkcs8.h> |
| |
| #include <limits.h> |
| #include <string.h> |
| |
| #include <openssl/bytestring.h> |
| #include <openssl/cipher.h> |
| #include <openssl/err.h> |
| #include <openssl/mem.h> |
| #include <openssl/nid.h> |
| #include <openssl/rand.h> |
| |
| #include "internal.h" |
| #include "../internal.h" |
| |
| |
| // 1.2.840.113549.1.5.12 |
| static const uint8_t kPBKDF2[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
| 0x0d, 0x01, 0x05, 0x0c}; |
| |
| // 1.2.840.113549.1.5.13 |
| static const uint8_t kPBES2[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
| 0x0d, 0x01, 0x05, 0x0d}; |
| |
| // 1.2.840.113549.2.7 |
| static const uint8_t kHMACWithSHA1[] = {0x2a, 0x86, 0x48, 0x86, |
| 0xf7, 0x0d, 0x02, 0x07}; |
| |
| // 1.2.840.113549.2.9 |
| static const uint8_t kHMACWithSHA256[] = {0x2a, 0x86, 0x48, 0x86, |
| 0xf7, 0x0d, 0x02, 0x09}; |
| |
| static const struct { |
| uint8_t oid[9]; |
| uint8_t oid_len; |
| int nid; |
| const EVP_CIPHER *(*cipher_func)(void); |
| } kCipherOIDs[] = { |
| // 1.2.840.113549.3.2 |
| {{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x02}, |
| 8, |
| NID_rc2_cbc, |
| &EVP_rc2_cbc}, |
| // 1.2.840.113549.3.7 |
| {{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x07}, |
| 8, |
| NID_des_ede3_cbc, |
| &EVP_des_ede3_cbc}, |
| // 2.16.840.1.101.3.4.1.2 |
| {{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x02}, |
| 9, |
| NID_aes_128_cbc, |
| &EVP_aes_128_cbc}, |
| // 2.16.840.1.101.3.4.1.22 |
| {{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x16}, |
| 9, |
| NID_aes_192_cbc, |
| &EVP_aes_192_cbc}, |
| // 2.16.840.1.101.3.4.1.42 |
| {{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x2a}, |
| 9, |
| NID_aes_256_cbc, |
| &EVP_aes_256_cbc}, |
| }; |
| |
| static const EVP_CIPHER *cbs_to_cipher(const CBS *cbs) { |
| for (const auto &cipher : kCipherOIDs) { |
| if (CBS_mem_equal(cbs, cipher.oid, cipher.oid_len)) { |
| return cipher.cipher_func(); |
| } |
| } |
| |
| return nullptr; |
| } |
| |
| static int add_cipher_oid(CBB *out, int nid) { |
| for (const auto &cipher : kCipherOIDs) { |
| if (cipher.nid == nid) { |
| return CBB_add_asn1_element(out, CBS_ASN1_OBJECT, cipher.oid, |
| cipher.oid_len); |
| } |
| } |
| |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_CIPHER); |
| return 0; |
| } |
| |
| const EVP_CIPHER *pkcs5_pbe2_nid_to_cipher(int nid) { |
| for (const auto &cipher : kCipherOIDs) { |
| if (cipher.nid == nid) { |
| return cipher.cipher_func(); |
| } |
| } |
| return nullptr; |
| } |
| |
| static int pkcs5_pbe2_cipher_init(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher, |
| const EVP_MD *pbkdf2_md, uint32_t iterations, |
| const char *pass, size_t pass_len, |
| const uint8_t *salt, size_t salt_len, |
| const uint8_t *iv, size_t iv_len, int enc) { |
| if (iv_len != EVP_CIPHER_iv_length(cipher)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_ERROR_SETTING_CIPHER_PARAMS); |
| return 0; |
| } |
| |
| uint8_t key[EVP_MAX_KEY_LENGTH]; |
| int ret = PKCS5_PBKDF2_HMAC(pass, pass_len, salt, salt_len, iterations, |
| pbkdf2_md, EVP_CIPHER_key_length(cipher), key) && |
| EVP_CipherInit_ex(ctx, cipher, NULL /* engine */, key, iv, enc); |
| OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH); |
| return ret; |
| } |
| |
| int PKCS5_pbe2_encrypt_init(CBB *out, EVP_CIPHER_CTX *ctx, |
| const EVP_CIPHER *cipher, uint32_t iterations, |
| const char *pass, size_t pass_len, |
| const uint8_t *salt, size_t salt_len) { |
| int cipher_nid = EVP_CIPHER_nid(cipher); |
| if (cipher_nid == NID_undef) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_CIPHER_HAS_NO_OBJECT_IDENTIFIER); |
| return 0; |
| } |
| |
| // Generate a random IV. |
| uint8_t iv[EVP_MAX_IV_LENGTH]; |
| if (!RAND_bytes(iv, EVP_CIPHER_iv_length(cipher))) { |
| return 0; |
| } |
| |
| // See RFC 2898, appendix A. |
| CBB algorithm, param, kdf, kdf_param, cipher_cbb; |
| if (!CBB_add_asn1(out, &algorithm, CBS_ASN1_SEQUENCE) || |
| !CBB_add_asn1_element(&algorithm, CBS_ASN1_OBJECT, kPBES2, |
| sizeof(kPBES2)) || |
| !CBB_add_asn1(&algorithm, ¶m, CBS_ASN1_SEQUENCE) || |
| !CBB_add_asn1(¶m, &kdf, CBS_ASN1_SEQUENCE) || |
| !CBB_add_asn1_element(&kdf, CBS_ASN1_OBJECT, kPBKDF2, sizeof(kPBKDF2)) || |
| !CBB_add_asn1(&kdf, &kdf_param, CBS_ASN1_SEQUENCE) || |
| !CBB_add_asn1_octet_string(&kdf_param, salt, salt_len) || |
| !CBB_add_asn1_uint64(&kdf_param, iterations) || |
| // Specify a key length for RC2. |
| (cipher_nid == NID_rc2_cbc && |
| !CBB_add_asn1_uint64(&kdf_param, EVP_CIPHER_key_length(cipher))) || |
| // Omit the PRF. We use the default hmacWithSHA1. |
| // TODO(crbug.com/396434682): Improve this defaults. |
| !CBB_add_asn1(¶m, &cipher_cbb, CBS_ASN1_SEQUENCE) || |
| !add_cipher_oid(&cipher_cbb, cipher_nid) || |
| // RFC 2898 says RC2-CBC and RC5-CBC-Pad use a SEQUENCE with version and |
| // IV, but OpenSSL always uses an OCTET STRING IV, so we do the same. |
| !CBB_add_asn1_octet_string(&cipher_cbb, iv, |
| EVP_CIPHER_iv_length(cipher)) || |
| !CBB_flush(out)) { |
| return 0; |
| } |
| |
| return pkcs5_pbe2_cipher_init(ctx, cipher, EVP_sha1(), iterations, pass, |
| pass_len, salt, salt_len, iv, |
| EVP_CIPHER_iv_length(cipher), 1 /* encrypt */); |
| } |
| |
| int PKCS5_pbe2_decrypt_init(const struct pbe_suite *suite, EVP_CIPHER_CTX *ctx, |
| const char *pass, size_t pass_len, CBS *param) { |
| CBS pbe_param, kdf, kdf_obj, enc_scheme, enc_obj; |
| if (!CBS_get_asn1(param, &pbe_param, CBS_ASN1_SEQUENCE) || |
| CBS_len(param) != 0 || |
| !CBS_get_asn1(&pbe_param, &kdf, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1(&pbe_param, &enc_scheme, CBS_ASN1_SEQUENCE) || |
| CBS_len(&pbe_param) != 0 || |
| !CBS_get_asn1(&kdf, &kdf_obj, CBS_ASN1_OBJECT) || |
| !CBS_get_asn1(&enc_scheme, &enc_obj, CBS_ASN1_OBJECT)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
| return 0; |
| } |
| |
| // Only PBKDF2 is supported. |
| if (!CBS_mem_equal(&kdf_obj, kPBKDF2, sizeof(kPBKDF2))) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_KEY_DERIVATION_FUNCTION); |
| return 0; |
| } |
| |
| // See if we recognise the encryption algorithm. |
| const EVP_CIPHER *cipher = cbs_to_cipher(&enc_obj); |
| if (cipher == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_CIPHER); |
| return 0; |
| } |
| |
| // Parse the KDF parameters. See RFC 8018, appendix A.2. |
| CBS pbkdf2_params, salt; |
| uint64_t iterations; |
| if (!CBS_get_asn1(&kdf, &pbkdf2_params, CBS_ASN1_SEQUENCE) || |
| CBS_len(&kdf) != 0 || |
| !CBS_get_asn1(&pbkdf2_params, &salt, CBS_ASN1_OCTETSTRING) || |
| !CBS_get_asn1_uint64(&pbkdf2_params, &iterations)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
| return 0; |
| } |
| |
| if (!pkcs12_iterations_acceptable(iterations)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT); |
| return 0; |
| } |
| |
| // The optional keyLength parameter, if present, must match the key length of |
| // the cipher. |
| if (CBS_peek_asn1_tag(&pbkdf2_params, CBS_ASN1_INTEGER)) { |
| uint64_t key_len; |
| if (!CBS_get_asn1_uint64(&pbkdf2_params, &key_len)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
| return 0; |
| } |
| |
| if (key_len != EVP_CIPHER_key_length(cipher)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_KEYLENGTH); |
| return 0; |
| } |
| } |
| |
| const EVP_MD *md = EVP_sha1(); |
| if (CBS_len(&pbkdf2_params) != 0) { |
| CBS alg_id, prf; |
| if (!CBS_get_asn1(&pbkdf2_params, &alg_id, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1(&alg_id, &prf, CBS_ASN1_OBJECT) || |
| CBS_len(&pbkdf2_params) != 0) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
| return 0; |
| } |
| |
| if (CBS_mem_equal(&prf, kHMACWithSHA1, sizeof(kHMACWithSHA1))) { |
| // hmacWithSHA1 is the DEFAULT, so DER requires it be omitted, but we |
| // match OpenSSL in tolerating it being present. |
| md = EVP_sha1(); |
| } else if (CBS_mem_equal(&prf, kHMACWithSHA256, sizeof(kHMACWithSHA256))) { |
| md = EVP_sha256(); |
| } else { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_PRF); |
| return 0; |
| } |
| |
| // All supported PRFs use a NULL parameter. |
| CBS null; |
| if (!CBS_get_asn1(&alg_id, &null, CBS_ASN1_NULL) || |
| CBS_len(&null) != 0 || |
| CBS_len(&alg_id) != 0) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
| return 0; |
| } |
| } |
| |
| // Parse the encryption scheme parameters. Note OpenSSL does not match the |
| // specification. Per RFC 2898, this should depend on the encryption scheme. |
| // In particular, RC2-CBC uses a SEQUENCE with version and IV. We align with |
| // OpenSSL. |
| CBS iv; |
| if (!CBS_get_asn1(&enc_scheme, &iv, CBS_ASN1_OCTETSTRING) || |
| CBS_len(&enc_scheme) != 0) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_PRF); |
| return 0; |
| } |
| |
| return pkcs5_pbe2_cipher_init(ctx, cipher, md, (uint32_t)iterations, pass, |
| pass_len, CBS_data(&salt), CBS_len(&salt), |
| CBS_data(&iv), CBS_len(&iv), 0 /* decrypt */); |
| } |