blob: 8933f61b32633bf812b21d52d0210efccc0e22c2 [file] [log] [blame] [edit]
// Copyright 2017 The BoringSSL Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <openssl/pkcs7.h>
#include <assert.h>
#include <limits.h>
#include <openssl/asn1.h>
#include <openssl/bytestring.h>
#include <openssl/cms.h>
#include <openssl/digest.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/mem.h>
#include <openssl/obj.h>
#include <openssl/pem.h>
#include <openssl/pool.h>
#include <openssl/stack.h>
#include <openssl/x509.h>
#include "../asn1/internal.h"
#include "../x509/internal.h"
#include "../internal.h"
#include "internal.h"
int PKCS7_get_certificates(STACK_OF(X509) *out_certs, CBS *cbs) {
int ret = 0;
const size_t initial_certs_len = sk_X509_num(out_certs);
STACK_OF(CRYPTO_BUFFER) *raw = sk_CRYPTO_BUFFER_new_null();
if (raw == NULL || !PKCS7_get_raw_certificates(raw, cbs, NULL)) {
goto err;
}
for (size_t i = 0; i < sk_CRYPTO_BUFFER_num(raw); i++) {
CRYPTO_BUFFER *buf = sk_CRYPTO_BUFFER_value(raw, i);
X509 *x509 = X509_parse_from_buffer(buf);
if (x509 == NULL || !sk_X509_push(out_certs, x509)) {
X509_free(x509);
goto err;
}
}
ret = 1;
err:
sk_CRYPTO_BUFFER_pop_free(raw, CRYPTO_BUFFER_free);
if (!ret) {
while (sk_X509_num(out_certs) != initial_certs_len) {
X509 *x509 = sk_X509_pop(out_certs);
X509_free(x509);
}
}
return ret;
}
int PKCS7_get_CRLs(STACK_OF(X509_CRL) *out_crls, CBS *cbs) {
CBS signed_data, crls;
uint8_t *der_bytes = NULL;
int ret = 0, has_crls;
const size_t initial_crls_len = sk_X509_CRL_num(out_crls);
// See https://tools.ietf.org/html/rfc2315#section-9.1
if (!pkcs7_parse_header(&der_bytes, &signed_data, cbs) ||
// Even if only CRLs are included, there may be an empty certificates
// block. OpenSSL does this, for example.
!CBS_get_optional_asn1(
&signed_data, NULL, NULL,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) ||
!CBS_get_optional_asn1(
&signed_data, &crls, &has_crls,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1)) {
goto err;
}
if (!has_crls) {
CBS_init(&crls, NULL, 0);
}
while (CBS_len(&crls) > 0) {
CBS crl_data;
X509_CRL *crl;
const uint8_t *inp;
if (!CBS_get_asn1_element(&crls, &crl_data, CBS_ASN1_SEQUENCE)) {
goto err;
}
if (CBS_len(&crl_data) > LONG_MAX) {
goto err;
}
inp = CBS_data(&crl_data);
crl = d2i_X509_CRL(NULL, &inp, (long)CBS_len(&crl_data));
if (!crl) {
goto err;
}
assert(inp == CBS_data(&crl_data) + CBS_len(&crl_data));
if (sk_X509_CRL_push(out_crls, crl) == 0) {
X509_CRL_free(crl);
goto err;
}
}
ret = 1;
err:
OPENSSL_free(der_bytes);
if (!ret) {
while (sk_X509_CRL_num(out_crls) != initial_crls_len) {
X509_CRL_free(sk_X509_CRL_pop(out_crls));
}
}
return ret;
}
int PKCS7_get_PEM_certificates(STACK_OF(X509) *out_certs, BIO *pem_bio) {
uint8_t *data;
long len;
int ret;
// Even though we pass PEM_STRING_PKCS7 as the expected PEM type here, PEM
// internally will actually allow several other values too, including
// "CERTIFICATE".
if (!PEM_bytes_read_bio(&data, &len, NULL /* PEM type output */,
PEM_STRING_PKCS7, pem_bio,
NULL /* password callback */,
NULL /* password callback argument */)) {
return 0;
}
CBS cbs;
CBS_init(&cbs, data, len);
ret = PKCS7_get_certificates(out_certs, &cbs);
OPENSSL_free(data);
return ret;
}
int PKCS7_get_PEM_CRLs(STACK_OF(X509_CRL) *out_crls, BIO *pem_bio) {
uint8_t *data;
long len;
int ret;
// Even though we pass PEM_STRING_PKCS7 as the expected PEM type here, PEM
// internally will actually allow several other values too, including
// "CERTIFICATE".
if (!PEM_bytes_read_bio(&data, &len, NULL /* PEM type output */,
PEM_STRING_PKCS7, pem_bio,
NULL /* password callback */,
NULL /* password callback argument */)) {
return 0;
}
CBS cbs;
CBS_init(&cbs, data, len);
ret = PKCS7_get_CRLs(out_crls, &cbs);
OPENSSL_free(data);
return ret;
}
static int pkcs7_bundle_certificates_cb(CBB *out, void *arg) {
auto *certs = static_cast<const STACK_OF(X509) *>(arg);
size_t i;
CBB certificates;
// See https://tools.ietf.org/html/rfc2315#section-9.1
if (!CBB_add_asn1(out, &certificates,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) {
return 0;
}
for (i = 0; i < sk_X509_num(certs); i++) {
X509 *x509 = sk_X509_value(certs, i);
uint8_t *buf;
int len = i2d_X509(x509, NULL);
if (len < 0 || !CBB_add_space(&certificates, &buf, len) ||
i2d_X509(x509, &buf) < 0) {
return 0;
}
}
// |certificates| is a implicitly-tagged SET OF.
return CBB_flush_asn1_set_of(&certificates) && CBB_flush(out);
}
int PKCS7_bundle_certificates(CBB *out, const STACK_OF(X509) *certs) {
return pkcs7_add_signed_data(
out, /*signed_data_version=*/1,
/*digest_algos_cb=*/nullptr, pkcs7_bundle_certificates_cb,
/*signer_infos_cb=*/nullptr, const_cast<STACK_OF(X509) *>(certs));
}
static int pkcs7_bundle_crls_cb(CBB *out, void *arg) {
auto *crls = static_cast<const STACK_OF(X509_CRL) *>(arg);
size_t i;
CBB crl_data;
// See https://tools.ietf.org/html/rfc2315#section-9.1
if (!CBB_add_asn1(out, &crl_data,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 1)) {
return 0;
}
for (i = 0; i < sk_X509_CRL_num(crls); i++) {
X509_CRL *crl = sk_X509_CRL_value(crls, i);
uint8_t *buf;
int len = i2d_X509_CRL(crl, NULL);
if (len < 0 || !CBB_add_space(&crl_data, &buf, len) ||
i2d_X509_CRL(crl, &buf) < 0) {
return 0;
}
}
// |crl_data| is a implicitly-tagged SET OF.
return CBB_flush_asn1_set_of(&crl_data) && CBB_flush(out);
}
int PKCS7_bundle_CRLs(CBB *out, const STACK_OF(X509_CRL) *crls) {
return pkcs7_add_signed_data(
out, /*signed_data_version=*/1,
/*digest_algos_cb=*/nullptr, pkcs7_bundle_crls_cb,
/*signer_infos_cb=*/nullptr, const_cast<STACK_OF(X509_CRL) *>(crls));
}
static PKCS7 *pkcs7_new(CBS *cbs) {
CBS copy = *cbs, copy2 = *cbs;
PKCS7 *ret = reinterpret_cast<PKCS7 *>(OPENSSL_zalloc(sizeof(PKCS7)));
if (ret == NULL) {
return NULL;
}
ret->type = OBJ_nid2obj(NID_pkcs7_signed);
ret->d.sign =
reinterpret_cast<PKCS7_SIGNED *>(OPENSSL_malloc(sizeof(PKCS7_SIGNED)));
if (ret->d.sign == NULL) {
goto err;
}
ret->d.sign->cert = sk_X509_new_null();
ret->d.sign->crl = sk_X509_CRL_new_null();
if (ret->d.sign->cert == NULL || ret->d.sign->crl == NULL ||
!PKCS7_get_certificates(ret->d.sign->cert, &copy) ||
!PKCS7_get_CRLs(ret->d.sign->crl, cbs)) {
goto err;
}
if (sk_X509_num(ret->d.sign->cert) == 0) {
sk_X509_free(ret->d.sign->cert);
ret->d.sign->cert = NULL;
}
if (sk_X509_CRL_num(ret->d.sign->crl) == 0) {
sk_X509_CRL_free(ret->d.sign->crl);
ret->d.sign->crl = NULL;
}
ret->ber_len = CBS_len(&copy2) - CBS_len(cbs);
ret->ber_bytes = reinterpret_cast<uint8_t *>(
OPENSSL_memdup(CBS_data(&copy2), ret->ber_len));
if (ret->ber_bytes == NULL) {
goto err;
}
return ret;
err:
PKCS7_free(ret);
return NULL;
}
PKCS7 *d2i_PKCS7(PKCS7 **out, const uint8_t **inp, size_t len) {
CBS cbs;
CBS_init(&cbs, *inp, len);
PKCS7 *ret = pkcs7_new(&cbs);
if (ret == NULL) {
return NULL;
}
*inp = CBS_data(&cbs);
if (out != NULL) {
PKCS7_free(*out);
*out = ret;
}
return ret;
}
PKCS7 *d2i_PKCS7_bio(BIO *bio, PKCS7 **out) {
// Use a generous bound, to allow for PKCS#7 files containing large root sets.
static const size_t kMaxSize = 4 * 1024 * 1024;
uint8_t *data;
size_t len;
if (!BIO_read_asn1(bio, &data, &len, kMaxSize)) {
return NULL;
}
CBS cbs;
CBS_init(&cbs, data, len);
PKCS7 *ret = pkcs7_new(&cbs);
OPENSSL_free(data);
if (out != NULL && ret != NULL) {
PKCS7_free(*out);
*out = ret;
}
return ret;
}
int i2d_PKCS7(const PKCS7 *p7, uint8_t **out) {
if (p7->ber_len > INT_MAX) {
OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW);
return -1;
}
if (out == NULL) {
return (int)p7->ber_len;
}
if (*out == NULL) {
*out =
reinterpret_cast<uint8_t *>(OPENSSL_memdup(p7->ber_bytes, p7->ber_len));
if (*out == NULL) {
return -1;
}
} else {
OPENSSL_memcpy(*out, p7->ber_bytes, p7->ber_len);
*out += p7->ber_len;
}
return (int)p7->ber_len;
}
int i2d_PKCS7_bio(BIO *bio, const PKCS7 *p7) {
return BIO_write_all(bio, p7->ber_bytes, p7->ber_len);
}
void PKCS7_free(PKCS7 *p7) {
if (p7 == NULL) {
return;
}
OPENSSL_free(p7->ber_bytes);
ASN1_OBJECT_free(p7->type);
// We only supported signed data.
if (p7->d.sign != NULL) {
sk_X509_pop_free(p7->d.sign->cert, X509_free);
sk_X509_CRL_pop_free(p7->d.sign->crl, X509_CRL_free);
OPENSSL_free(p7->d.sign);
}
OPENSSL_free(p7);
}
// We only support signed data, so these getters are no-ops.
int PKCS7_type_is_data(const PKCS7 *p7) { return 0; }
int PKCS7_type_is_digest(const PKCS7 *p7) { return 0; }
int PKCS7_type_is_encrypted(const PKCS7 *p7) { return 0; }
int PKCS7_type_is_enveloped(const PKCS7 *p7) { return 0; }
int PKCS7_type_is_signed(const PKCS7 *p7) { return 1; }
int PKCS7_type_is_signedAndEnveloped(const PKCS7 *p7) { return 0; }
static bool digest_sign_update(EVP_MD_CTX *ctx, BIO *data) {
for (;;) {
uint8_t buf[4096];
const int n = BIO_read(data, buf, sizeof(buf));
if (n == 0) {
return true;
} else if (n < 0 || !EVP_DigestSignUpdate(ctx, buf, n)) {
return false;
}
}
}
namespace {
struct signer_info_data {
X509 *sign_cert = nullptr;
bssl::ScopedEVP_MD_CTX sign_ctx;
bool use_key_id = false;
};
} // namespace
static int write_signer_digest_algos(CBB *digest_algos_set, void *arg) {
auto *si_data = static_cast<struct signer_info_data *>(arg);
// https://www.rfc-editor.org/rfc/rfc5754.html#section-2
// "Implementations MUST generate SHA2 AlgorithmIdentifiers with absent
// parameters."
return EVP_marshal_digest_algorithm_no_params(
digest_algos_set, EVP_MD_CTX_get0_md(si_data->sign_ctx.get()));
}
// write_signer_info writes the SignerInfo structure from
// https://www.rfc-editor.org/rfc/rfc2315.html#section-9.2 and
// https://www.rfc-editor.org/rfc/rfc5652.html#section-5.3 to |out|. It returns
// one on success or zero on error.
static int write_signer_info(CBB *out, void *arg) {
auto *si_data = static_cast<struct signer_info_data *>(arg);
uint64_t version = si_data->use_key_id ? 3u : 1u;
CBB seq, child, signing_algo, null, signature;
if (!CBB_add_asn1(out, &seq, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1_uint64(&seq, version)) {
return 0;
}
// Output the SignerIdentifier.
if (si_data->use_key_id) {
const ASN1_OCTET_STRING *skid =
X509_get0_subject_key_id(si_data->sign_cert);
if (skid == nullptr) {
OPENSSL_PUT_ERROR(CMS, CMS_R_CERTIFICATE_HAS_NO_KEYID);
return 0;
}
// subjectKeyIdentifier is implicitly-tagged.
if (!CBB_add_asn1_element(&seq, CBS_ASN1_CONTEXT_SPECIFIC | 0,
ASN1_STRING_get0_data(skid),
ASN1_STRING_length(skid))) {
return 0;
}
} else {
if (!CBB_add_asn1(&seq, &child, CBS_ASN1_SEQUENCE) ||
!x509_marshal_name(&child, X509_get_subject_name(si_data->sign_cert)) ||
!asn1_marshal_integer(&child,
X509_get0_serialNumber(si_data->sign_cert),
/*tag=*/0)) {
return 0;
}
}
// Output the digest and signature algorithm. This cannot use X.509 signature
// algorithms because CMS incorrectly decomposes signature algorithms into a
// combination of digesting and "encrypting" the digest, then uses the plain
// rsaEncryption OID instead of the hash-specific RSA OIDs. For now, we only
// support RSA.
EVP_PKEY *pkey = EVP_PKEY_CTX_get0_pkey(si_data->sign_ctx->pctx);
if (EVP_PKEY_id(pkey) != EVP_PKEY_RSA) {
OPENSSL_PUT_ERROR(PKCS7, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
if (!EVP_marshal_digest_algorithm_no_params(
&seq, EVP_MD_CTX_get0_md(si_data->sign_ctx.get())) ||
!CBB_add_asn1(&seq, &signing_algo, CBS_ASN1_SEQUENCE) ||
!OBJ_nid2cbb(&signing_algo, NID_rsaEncryption) ||
!CBB_add_asn1(&signing_algo, &null, CBS_ASN1_NULL)) {
return 0;
}
// Output the signature.
uint8_t *ptr;
size_t sig_len;
if (!EVP_DigestSignFinal(si_data->sign_ctx.get(), nullptr, &sig_len) ||
!CBB_add_asn1(&seq, &signature, CBS_ASN1_OCTETSTRING) ||
!CBB_reserve(&signature, &ptr, sig_len) ||
!EVP_DigestSignFinal(si_data->sign_ctx.get(), ptr, &sig_len) ||
!CBB_did_write(&signature, sig_len) || //
!CBB_flush(out)) {
return 0;
}
return 1;
}
int pkcs7_add_external_signature(CBB *out, X509 *sign_cert, EVP_PKEY *key,
const EVP_MD *md, BIO *data, bool use_key_id) {
signer_info_data si_data;
si_data.use_key_id = use_key_id;
si_data.sign_cert = sign_cert;
// Set up the signature.
if (!EVP_DigestSignInit(si_data.sign_ctx.get(), nullptr, md, nullptr, key) ||
!digest_sign_update(si_data.sign_ctx.get(), data)) {
return 0;
}
// See RFC 5652, Section 5.1. When no certificates are present, the version
// comes from the highest SignerInfo version, which will be 3 (CMS) for a key
// ID, and 1 (CMS or PKCS#7) for issuer and serial.
uint64_t signed_data_version = use_key_id ? 3u : 1u;
return pkcs7_add_signed_data(
out, signed_data_version, write_signer_digest_algos,
/*cert_crl_cb=*/nullptr, write_signer_info, &si_data);
}
PKCS7 *PKCS7_sign(X509 *sign_cert, EVP_PKEY *pkey, STACK_OF(X509) *certs,
BIO *data, int flags) {
bssl::ScopedCBB cbb;
if (!CBB_init(cbb.get(), 2048)) {
return nullptr;
}
if (sign_cert == nullptr && pkey == nullptr && flags == PKCS7_DETACHED) {
// Caller just wants to bundle certificates.
if (!PKCS7_bundle_certificates(cbb.get(), certs)) {
return nullptr;
}
} else if (sign_cert != nullptr && pkey != nullptr && certs == nullptr &&
data != nullptr &&
flags == (PKCS7_NOATTR | PKCS7_BINARY | PKCS7_NOCERTS |
PKCS7_DETACHED)) {
// In OpenSSL, this API signs with some default hash. That default has been
// SHA-256 since 2015.
if (!pkcs7_add_external_signature(cbb.get(), sign_cert, pkey, EVP_sha256(),
data, /*use_key_id=*/false)) {
return nullptr;
}
} else {
OPENSSL_PUT_ERROR(PKCS7, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return nullptr;
}
CBS cbs;
CBS_init(&cbs, CBB_data(cbb.get()), CBB_len(cbb.get()));
return pkcs7_new(&cbs);
}