blob: d77a3d2b95eec80e73af93a1b79bf0bae1f757e0 [file] [log] [blame] [edit]
// Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <openssl/evp.h>
#include <string.h>
#include <openssl/bytestring.h>
#include <openssl/dsa.h>
#include <openssl/ec_key.h>
#include <openssl/err.h>
#include <openssl/rsa.h>
#include "internal.h"
#include "../bytestring/internal.h"
#include "../internal.h"
// We intentionally omit |dh_asn1_meth| from this list. It is not serializable.
static const EVP_PKEY_ASN1_METHOD *const kASN1Methods[] = {
&rsa_asn1_meth,
&ec_asn1_meth,
&dsa_asn1_meth,
&ed25519_asn1_meth,
&x25519_asn1_meth,
};
static const EVP_PKEY_ASN1_METHOD *parse_key_type(CBS *cbs) {
CBS oid;
if (!CBS_get_asn1(cbs, &oid, CBS_ASN1_OBJECT)) {
return NULL;
}
for (unsigned i = 0; i < OPENSSL_ARRAY_SIZE(kASN1Methods); i++) {
const EVP_PKEY_ASN1_METHOD *method = kASN1Methods[i];
if (CBS_len(&oid) == method->oid_len &&
OPENSSL_memcmp(CBS_data(&oid), method->oid, method->oid_len) == 0) {
return method;
}
}
return NULL;
}
EVP_PKEY *EVP_parse_public_key(CBS *cbs) {
// Parse the SubjectPublicKeyInfo.
CBS spki, algorithm, key;
uint8_t padding;
if (!CBS_get_asn1(cbs, &spki, CBS_ASN1_SEQUENCE) ||
!CBS_get_asn1(&spki, &algorithm, CBS_ASN1_SEQUENCE) ||
!CBS_get_asn1(&spki, &key, CBS_ASN1_BITSTRING) ||
CBS_len(&spki) != 0) {
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
return nullptr;
}
const EVP_PKEY_ASN1_METHOD *method = parse_key_type(&algorithm);
if (method == nullptr) {
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM);
return nullptr;
}
if (// Every key type defined encodes the key as a byte string with the same
// conversion to BIT STRING.
!CBS_get_u8(&key, &padding) ||
padding != 0) {
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
return nullptr;
}
// Set up an |EVP_PKEY| of the appropriate type.
bssl::UniquePtr<EVP_PKEY> ret(EVP_PKEY_new());
if (ret == nullptr) {
return nullptr;
}
evp_pkey_set_method(ret.get(), method);
// Call into the type-specific SPKI decoding function.
if (ret->ameth->pub_decode == nullptr) {
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM);
return nullptr;
}
if (!ret->ameth->pub_decode(ret.get(), &algorithm, &key)) {
return nullptr;
}
return ret.release();
}
int EVP_marshal_public_key(CBB *cbb, const EVP_PKEY *key) {
if (key->ameth == NULL || key->ameth->pub_encode == NULL) {
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM);
return 0;
}
return key->ameth->pub_encode(cbb, key);
}
EVP_PKEY *EVP_parse_private_key(CBS *cbs) {
// Parse the PrivateKeyInfo.
CBS pkcs8, algorithm, key;
uint64_t version;
if (!CBS_get_asn1(cbs, &pkcs8, CBS_ASN1_SEQUENCE) ||
!CBS_get_asn1_uint64(&pkcs8, &version) ||
version != 0 ||
!CBS_get_asn1(&pkcs8, &algorithm, CBS_ASN1_SEQUENCE) ||
!CBS_get_asn1(&pkcs8, &key, CBS_ASN1_OCTETSTRING)) {
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
return nullptr;
}
const EVP_PKEY_ASN1_METHOD *method = parse_key_type(&algorithm);
if (method == nullptr) {
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM);
return nullptr;
}
// A PrivateKeyInfo ends with a SET of Attributes which we ignore.
// Set up an |EVP_PKEY| of the appropriate type.
bssl::UniquePtr<EVP_PKEY> ret(EVP_PKEY_new());
if (ret == nullptr) {
return nullptr;
}
evp_pkey_set_method(ret.get(), method);
// Call into the type-specific PrivateKeyInfo decoding function.
if (ret->ameth->priv_decode == nullptr) {
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM);
return nullptr;
}
if (!ret->ameth->priv_decode(ret.get(), &algorithm, &key)) {
return nullptr;
}
return ret.release();
}
int EVP_marshal_private_key(CBB *cbb, const EVP_PKEY *key) {
if (key->ameth == NULL || key->ameth->priv_encode == NULL) {
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_ALGORITHM);
return 0;
}
return key->ameth->priv_encode(cbb, key);
}
static bssl::UniquePtr<EVP_PKEY> old_priv_decode(CBS *cbs, int type) {
bssl::UniquePtr<EVP_PKEY> ret(EVP_PKEY_new());
if (ret == nullptr) {
return nullptr;
}
switch (type) {
case EVP_PKEY_EC: {
bssl::UniquePtr<EC_KEY> ec_key(EC_KEY_parse_private_key(cbs, nullptr));
if (ec_key == nullptr) {
return nullptr;
}
EVP_PKEY_assign_EC_KEY(ret.get(), ec_key.release());
return ret;
}
case EVP_PKEY_DSA: {
bssl::UniquePtr<DSA> dsa(DSA_parse_private_key(cbs));
if (dsa == nullptr) {
return nullptr;
}
EVP_PKEY_assign_DSA(ret.get(), dsa.release());
return ret;
}
case EVP_PKEY_RSA: {
bssl::UniquePtr<RSA> rsa(RSA_parse_private_key(cbs));
if (rsa == nullptr) {
return nullptr;
}
EVP_PKEY_assign_RSA(ret.get(), rsa.release());
return ret;
}
default:
OPENSSL_PUT_ERROR(EVP, EVP_R_UNKNOWN_PUBLIC_KEY_TYPE);
return nullptr;
}
}
EVP_PKEY *d2i_PrivateKey(int type, EVP_PKEY **out, const uint8_t **inp,
long len) {
if (len < 0) {
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
return nullptr;
}
// Parse with the legacy format.
CBS cbs;
CBS_init(&cbs, *inp, (size_t)len);
bssl::UniquePtr<EVP_PKEY> ret = old_priv_decode(&cbs, type);
if (ret == nullptr) {
// Try again with PKCS#8.
ERR_clear_error();
CBS_init(&cbs, *inp, (size_t)len);
ret.reset(EVP_parse_private_key(&cbs));
if (ret == nullptr) {
return nullptr;
}
if (ret->type != type) {
OPENSSL_PUT_ERROR(EVP, EVP_R_DIFFERENT_KEY_TYPES);
return nullptr;
}
}
if (out != nullptr) {
EVP_PKEY_free(*out);
*out = ret.get();
}
*inp = CBS_data(&cbs);
return ret.release();
}
// num_elements parses one SEQUENCE from |in| and returns the number of elements
// in it. On parse error, it returns zero.
static size_t num_elements(const uint8_t *in, size_t in_len) {
CBS cbs, sequence;
CBS_init(&cbs, in, (size_t)in_len);
if (!CBS_get_asn1(&cbs, &sequence, CBS_ASN1_SEQUENCE)) {
return 0;
}
size_t count = 0;
while (CBS_len(&sequence) > 0) {
if (!CBS_get_any_asn1_element(&sequence, NULL, NULL, NULL)) {
return 0;
}
count++;
}
return count;
}
EVP_PKEY *d2i_AutoPrivateKey(EVP_PKEY **out, const uint8_t **inp, long len) {
if (len < 0) {
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
return NULL;
}
// Parse the input as a PKCS#8 PrivateKeyInfo.
CBS cbs;
CBS_init(&cbs, *inp, (size_t)len);
EVP_PKEY *ret = EVP_parse_private_key(&cbs);
if (ret != NULL) {
if (out != NULL) {
EVP_PKEY_free(*out);
*out = ret;
}
*inp = CBS_data(&cbs);
return ret;
}
ERR_clear_error();
// Count the elements to determine the legacy key format.
switch (num_elements(*inp, (size_t)len)) {
case 4:
return d2i_PrivateKey(EVP_PKEY_EC, out, inp, len);
case 6:
return d2i_PrivateKey(EVP_PKEY_DSA, out, inp, len);
default:
return d2i_PrivateKey(EVP_PKEY_RSA, out, inp, len);
}
}
int i2d_PublicKey(const EVP_PKEY *key, uint8_t **outp) {
switch (key->type) {
case EVP_PKEY_RSA:
return i2d_RSAPublicKey(EVP_PKEY_get0_RSA(key), outp);
case EVP_PKEY_DSA:
return i2d_DSAPublicKey(EVP_PKEY_get0_DSA(key), outp);
case EVP_PKEY_EC:
return i2o_ECPublicKey(EVP_PKEY_get0_EC_KEY(key), outp);
default:
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_PUBLIC_KEY_TYPE);
return -1;
}
}
EVP_PKEY *d2i_PublicKey(int type, EVP_PKEY **out, const uint8_t **inp,
long len) {
bssl::UniquePtr<EVP_PKEY> ret(EVP_PKEY_new());
if (ret == nullptr) {
return nullptr;
}
CBS cbs;
CBS_init(&cbs, *inp, len < 0 ? 0 : (size_t)len);
switch (type) {
case EVP_PKEY_RSA: {
bssl::UniquePtr<RSA> rsa(RSA_parse_public_key(&cbs));
if (rsa == nullptr) {
return nullptr;
}
EVP_PKEY_assign_RSA(ret.get(), rsa.release());
break;
}
// Unlike OpenSSL, we do not support EC keys with this API. The raw EC
// public key serialization requires knowing the group. In OpenSSL, calling
// this function with |EVP_PKEY_EC| and setting |out| to nullptr does not
// work. It requires |*out| to include a partially-initialized |EVP_PKEY| to
// extract the group.
default:
OPENSSL_PUT_ERROR(EVP, EVP_R_UNSUPPORTED_PUBLIC_KEY_TYPE);
return nullptr;
}
*inp = CBS_data(&cbs);
if (out != nullptr) {
EVP_PKEY_free(*out);
*out = ret.get();
}
return ret.release();
}
EVP_PKEY *d2i_PUBKEY(EVP_PKEY **out, const uint8_t **inp, long len) {
if (len < 0) {
return nullptr;
}
CBS cbs;
CBS_init(&cbs, *inp, (size_t)len);
bssl::UniquePtr<EVP_PKEY> ret(EVP_parse_public_key(&cbs));
if (ret == nullptr) {
return nullptr;
}
if (out != nullptr) {
EVP_PKEY_free(*out);
*out = ret.get();
}
*inp = CBS_data(&cbs);
return ret.release();
}
int i2d_PUBKEY(const EVP_PKEY *pkey, uint8_t **outp) {
if (pkey == NULL) {
return 0;
}
CBB cbb;
if (!CBB_init(&cbb, 128) ||
!EVP_marshal_public_key(&cbb, pkey)) {
CBB_cleanup(&cbb);
return -1;
}
return CBB_finish_i2d(&cbb, outp);
}
RSA *d2i_RSA_PUBKEY(RSA **out, const uint8_t **inp, long len) {
if (len < 0) {
return nullptr;
}
CBS cbs;
CBS_init(&cbs, *inp, (size_t)len);
bssl::UniquePtr<EVP_PKEY> pkey(EVP_parse_public_key(&cbs));
if (pkey == nullptr) {
return nullptr;
}
bssl::UniquePtr<RSA> rsa(EVP_PKEY_get1_RSA(pkey.get()));
if (rsa == nullptr) {
return nullptr;
}
if (out != nullptr) {
RSA_free(*out);
*out = rsa.get();
}
*inp = CBS_data(&cbs);
return rsa.release();
}
int i2d_RSA_PUBKEY(const RSA *rsa, uint8_t **outp) {
if (rsa == nullptr) {
return 0;
}
bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
if (pkey == nullptr ||
!EVP_PKEY_set1_RSA(pkey.get(), const_cast<RSA *>(rsa))) {
return -1;
}
return i2d_PUBKEY(pkey.get(), outp);
}
DSA *d2i_DSA_PUBKEY(DSA **out, const uint8_t **inp, long len) {
if (len < 0) {
return nullptr;
}
CBS cbs;
CBS_init(&cbs, *inp, (size_t)len);
bssl::UniquePtr<EVP_PKEY> pkey(EVP_parse_public_key(&cbs));
if (pkey == nullptr) {
return nullptr;
}
bssl::UniquePtr<DSA> dsa(EVP_PKEY_get1_DSA(pkey.get()));
if (dsa == nullptr) {
return nullptr;
}
if (out != nullptr) {
DSA_free(*out);
*out = dsa.get();
}
*inp = CBS_data(&cbs);
return dsa.release();
}
int i2d_DSA_PUBKEY(const DSA *dsa, uint8_t **outp) {
if (dsa == nullptr) {
return 0;
}
bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
if (pkey == nullptr ||
!EVP_PKEY_set1_DSA(pkey.get(), const_cast<DSA *>(dsa))) {
return -1;
}
return i2d_PUBKEY(pkey.get(), outp);
}
EC_KEY *d2i_EC_PUBKEY(EC_KEY **out, const uint8_t **inp, long len) {
if (len < 0) {
return nullptr;
}
CBS cbs;
CBS_init(&cbs, *inp, (size_t)len);
bssl::UniquePtr<EVP_PKEY> pkey(EVP_parse_public_key(&cbs));
if (pkey == nullptr) {
return nullptr;
}
bssl::UniquePtr<EC_KEY> ec_key(EVP_PKEY_get1_EC_KEY(pkey.get()));
if (ec_key == nullptr) {
return nullptr;
}
if (out != nullptr) {
EC_KEY_free(*out);
*out = ec_key.get();
}
*inp = CBS_data(&cbs);
return ec_key.release();
}
int i2d_EC_PUBKEY(const EC_KEY *ec_key, uint8_t **outp) {
if (ec_key == NULL) {
return 0;
}
bssl::UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
if (pkey == nullptr ||
!EVP_PKEY_set1_EC_KEY(pkey.get(), const_cast<EC_KEY *>(ec_key))) {
return -1;
}
return i2d_PUBKEY(pkey.get(), outp);
}