Implement Enhanced Miller-Rabin primality test for FIPS.
Change-Id: I4968df9f37b450f0799ac7ca19900c7b909e7f6d
Reviewed-on: https://boringssl-review.googlesource.com/15127
Reviewed-by: Steven Valdez <svaldez@google.com>
Commit-Queue: Steven Valdez <svaldez@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
diff --git a/crypto/bn/prime.c b/crypto/bn/prime.c
index 1dff9e7..3b0a94a 100644
--- a/crypto/bn/prime.c
+++ b/crypto/bn/prime.c
@@ -342,8 +342,6 @@
return 28;
}
-static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
- const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont);
static int probable_prime(BIGNUM *rnd, int bits);
static int probable_prime_dh(BIGNUM *rnd, int bits, const BIGNUM *add,
const BIGNUM *rem, BN_CTX *ctx);
@@ -486,11 +484,8 @@
int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed,
int do_trial_division, BN_GENCB *cb) {
- int i, j, ret = -1;
- int k;
+ int i, ret = -1;
BN_CTX *ctx = NULL;
- BIGNUM *A1, *A1_odd, *check; /* taken from ctx */
- BN_MONT_CTX *mont = NULL;
const BIGNUM *A = NULL;
if (BN_cmp(a, BN_value_one()) <= 0) {
@@ -542,65 +537,12 @@
A = a;
}
- A1 = BN_CTX_get(ctx);
- A1_odd = BN_CTX_get(ctx);
- check = BN_CTX_get(ctx);
- if (check == NULL) {
+ enum bn_primality_result_t result;
+ if (!BN_enhanced_miller_rabin_primality_test(&result, A, checks, ctx, cb)) {
goto err;
}
- /* compute A1 := A - 1 */
- if (!BN_copy(A1, A)) {
- goto err;
- }
- if (!BN_sub_word(A1, 1)) {
- goto err;
- }
- if (BN_is_zero(A1)) {
- ret = 0;
- goto err;
- }
-
- /* write A1 as A1_odd * 2^k */
- k = 1;
- while (!BN_is_bit_set(A1, k)) {
- k++;
- }
- if (!BN_rshift(A1_odd, A1, k)) {
- goto err;
- }
-
- /* Montgomery setup for computations mod A */
- mont = BN_MONT_CTX_new();
- if (mont == NULL) {
- goto err;
- }
- if (!BN_MONT_CTX_set(mont, A, ctx)) {
- goto err;
- }
-
- for (i = 0; i < checks; i++) {
- if (!BN_pseudo_rand_range(check, A1)) {
- goto err;
- }
- if (!BN_add_word(check, 1)) {
- goto err;
- }
- /* now 1 <= check < A */
-
- j = witness(check, A, A1, A1_odd, k, ctx, mont);
- if (j == -1) {
- goto err;
- }
- if (j) {
- ret = 0;
- goto err;
- }
- if (!BN_GENCB_call(cb, 1, i)) {
- goto err;
- }
- }
- ret = 1;
+ ret = (result == bn_probably_prime);
err:
if (ctx != NULL) {
@@ -609,6 +551,139 @@
BN_CTX_free(ctx);
}
}
+
+ return ret;
+}
+
+/* Implement the Enhanced Miller-Rabin Primality Test (FIPS 186-4 C.3.2). */
+int BN_enhanced_miller_rabin_primality_test(
+ enum bn_primality_result_t *out_result, const BIGNUM *w, int iterations,
+ BN_CTX *ctx, BN_GENCB *cb) {
+ int ret = 0;
+ BN_MONT_CTX *mont = NULL;
+
+ if (out_result == NULL) {
+ goto err;
+ }
+
+ BIGNUM *w1 = BN_CTX_get(ctx);
+ if (w1 == NULL ||
+ !BN_copy(w1, w) ||
+ !BN_sub_word(w1, 1)) {
+ goto err;
+ }
+
+ /* Write w1 as m*2^a (Steps 1 and 2). */
+ int a = 0;
+ while (!BN_is_bit_set(w1, a)) {
+ a++;
+ }
+ BIGNUM *m = BN_CTX_get(ctx);
+ if (m == NULL ||
+ !BN_rshift(m, w1, a)) {
+ goto err;
+ }
+
+ BIGNUM *b = BN_CTX_get(ctx);
+ BIGNUM *g = BN_CTX_get(ctx);
+ BIGNUM *z = BN_CTX_get(ctx);
+ BIGNUM *x = BN_CTX_get(ctx);
+ BIGNUM *x1 = BN_CTX_get(ctx);
+ if (b == NULL ||
+ g == NULL ||
+ z == NULL ||
+ x == NULL ||
+ x1 == NULL) {
+ goto err;
+ }
+
+ /* Montgomery setup for computations mod A */
+ mont = BN_MONT_CTX_new();
+ if (mont == NULL) {
+ goto err;
+ }
+ if (!BN_MONT_CTX_set(mont, w, ctx)) {
+ goto err;
+ }
+
+ /* The following loop performs in inner iteration of the Enhanced Miller-Rabin
+ * Primality test (Step 4). */
+ for (int i = 1; i <= iterations; i++) {
+ /* Step 4.1-4.2 */
+ if (!BN_rand_range_ex(b, 2, w1)) {
+ goto err;
+ }
+
+ /* Step 4.3-4.4 */
+ if (!BN_gcd(g, b, w, ctx)) {
+ goto err;
+ }
+ if (BN_cmp_word(g, 1) > 0) {
+ *out_result = bn_composite;
+ ret = 1;
+ goto err;
+ }
+
+ /* Step 4.5 */
+ if (!BN_mod_exp_mont(z, b, m, w, ctx, mont)) {
+ goto err;
+ }
+
+ /* Step 4.6 */
+ if (BN_is_one(z) || BN_cmp(z, w1) == 0) {
+ goto loop;
+ }
+
+ /* Step 4.7 */
+ for (int j = 1; j < a; j++) {
+ if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) {
+ goto err;
+ }
+ if (BN_cmp(z, w1) == 0) {
+ goto loop;
+ }
+ if (BN_is_one(z)) {
+ goto composite;
+ }
+ }
+
+ /* Step 4.8-4.9 */
+ if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) {
+ goto err;
+ }
+
+ /* Step 4.10-4.11 */
+ if (!BN_is_one(z) && !BN_copy(x, z)) {
+ goto err;
+ }
+
+ composite:
+ /* Step 4.12-4.14 */
+ if (!BN_copy(x1, x) ||
+ !BN_sub_word(x1, 1) ||
+ !BN_gcd(g, x1, w, ctx)) {
+ goto err;
+ }
+ if (BN_cmp_word(g, 1) > 0) {
+ *out_result = bn_composite;
+ } else {
+ *out_result = bn_non_prime_power_composite;
+ }
+
+ ret = 1;
+ goto err;
+
+ loop:
+ /* Step 4.15 */
+ if (!BN_GENCB_call(cb, 1, i)) {
+ goto err;
+ }
+ }
+
+ *out_result = bn_probably_prime;
+ ret = 1;
+
+err:
if (mont != NULL) {
BN_MONT_CTX_free(mont);
}
@@ -616,39 +691,6 @@
return ret;
}
-static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
- const BIGNUM *a1_odd, int k, BN_CTX *ctx,
- BN_MONT_CTX *mont) {
- if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) { /* w := w^a1_odd mod a */
- return -1;
- }
- if (BN_is_one(w)) {
- return 0; /* probably prime */
- }
- if (BN_cmp(w, a1) == 0) {
- return 0; /* w == -1 (mod a), 'a' is probably prime */
- }
-
- while (--k) {
- if (!BN_mod_mul(w, w, w, a, ctx)) { /* w := w^2 mod a */
- return -1;
- }
-
- if (BN_is_one(w)) {
- return 1; /* 'a' is composite, otherwise a previous 'w' would
- * have been == -1 (mod 'a') */
- }
-
- if (BN_cmp(w, a1) == 0) {
- return 0; /* w == -1 (mod a), 'a' is probably prime */
- }
- }
-
- /* If we get here, 'w' is the (a-1)/2-th power of the original 'w',
- * and it is neither -1 nor +1 -- so 'a' cannot be prime */
- return 1;
-}
-
static int probable_prime(BIGNUM *rnd, int bits) {
int i;
uint16_t mods[NUMPRIMES];
diff --git a/include/openssl/bn.h b/include/openssl/bn.h
index a57c23a9..6e3e601 100644
--- a/include/openssl/bn.h
+++ b/include/openssl/bn.h
@@ -707,6 +707,22 @@
* Miller-Rabin checks that gives a false positive rate of ~2^{-80}. */
#define BN_prime_checks 0
+/* bn_primality_result_t enumerates the outcomes of primality-testing. */
+enum bn_primality_result_t {
+ bn_probably_prime,
+ bn_composite,
+ bn_non_prime_power_composite,
+};
+
+/* BN_enhanced_miller_rabin_primality_test tests whether |w| is probably a prime
+ * number using the Enhanced Miller-Rabin test with |iterations| iterations and
+ * returns the result in |out_result|. It returns one on success and zero on
+ * failure. If |cb| is not NULL, then it is called during each iteration of the
+ * primality test. */
+int BN_enhanced_miller_rabin_primality_test(
+ enum bn_primality_result_t *out_result, const BIGNUM *w, int iterations,
+ BN_CTX *ctx, BN_GENCB *cb);
+
/* BN_primality_test sets |*is_probably_prime| to one if |candidate| is
* probably a prime number by the Miller-Rabin test or zero if it's certainly
* not.