Add optimised version of P-224.

This imports the Google-authored P-224 implementation by Emilia Käsper
and Bodo Möller that is also in upstream OpenSSL.

Change-Id: I16005c74a2a3e374fb136d36f3f6569dab9d8919
Reviewed-on: https://boringssl-review.googlesource.com/6145
Reviewed-by: Adam Langley <agl@google.com>
diff --git a/crypto/ec/CMakeLists.txt b/crypto/ec/CMakeLists.txt
index 38a91f8..2b76759 100644
--- a/crypto/ec/CMakeLists.txt
+++ b/crypto/ec/CMakeLists.txt
@@ -10,6 +10,7 @@
   ec_key.c
   ec_montgomery.c
   oct.c
+  p224-64.c
   p256-64.c
   util-64.c
   simple.c
diff --git a/crypto/ec/ec.c b/crypto/ec/ec.c
index 3117f16..a73044e 100644
--- a/crypto/ec/ec.c
+++ b/crypto/ec/ec.c
@@ -218,15 +218,25 @@
      0xA5, 0xD0, 0x3B, 0xB5, 0xC9, 0xB8, 0x89, 0x9C, 0x47, 0xAE, 0xBB, 0x6F,
      0xB7, 0x1E, 0x91, 0x38, 0x64, 0x09}};
 
-const struct built_in_curve OPENSSL_built_in_curves[] = {
-    {NID_secp224r1, &P224, 0},
-    {
-        NID_X9_62_prime256v1, &P256,
-    /* MSAN appears to have a bug that causes this P-256 code to be miscompiled
-     * in opt mode. While that is being looked at, don't run the uint128_t
-     * P-256 code under MSAN for now. */
+/* MSan appears to have a bug that causes code to be miscompiled in opt mode.
+ * While that is being looked at, don't run the uint128_t code under MSan. */
 #if defined(OPENSSL_64_BIT) && !defined(OPENSSL_WINDOWS) && \
     !defined(MEMORY_SANITIZER)
+#define BORINGSSL_USE_INT128_CODE
+#endif
+
+const struct built_in_curve OPENSSL_built_in_curves[] = {
+    {
+        NID_secp224r1, &P224,
+#if defined(BORINGSSL_USE_INT128_CODE)
+        EC_GFp_nistp224_method,
+#else
+        0,
+#endif
+    },
+    {
+        NID_X9_62_prime256v1, &P256,
+#if defined(BORINGSSL_USE_INT128_CODE)
         EC_GFp_nistp256_method,
 #else
         0,
diff --git a/crypto/ec/internal.h b/crypto/ec/internal.h
index 71062c1..4b78c1b 100644
--- a/crypto/ec/internal.h
+++ b/crypto/ec/internal.h
@@ -319,6 +319,7 @@
 
 void ec_GFp_nistp_recode_scalar_bits(uint8_t *sign, uint8_t *digit, uint8_t in);
 
+const EC_METHOD *EC_GFp_nistp224_method(void);
 const EC_METHOD *EC_GFp_nistp256_method(void);
 
 struct ec_key_st {
diff --git a/crypto/ec/p224-64.c b/crypto/ec/p224-64.c
new file mode 100644
index 0000000..f8527bc
--- /dev/null
+++ b/crypto/ec/p224-64.c
@@ -0,0 +1,1365 @@
+/* Copyright (c) 2015, Google Inc.
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
+ * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
+ * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
+ * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
+
+/* A 64-bit implementation of the NIST P-224 elliptic curve point multiplication
+ *
+ * Inspired by Daniel J. Bernstein's public domain nistp224 implementation
+ * and Adam Langley's public domain 64-bit C implementation of curve25519. */
+
+#include <openssl/base.h>
+
+#if defined(OPENSSL_64_BIT) && !defined(OPENSSL_WINDOWS)
+
+#include <openssl/bn.h>
+#include <openssl/ec.h>
+#include <openssl/err.h>
+#include <openssl/mem.h>
+#include <openssl/obj.h>
+
+#include <string.h>
+
+#include "internal.h"
+
+
+typedef uint8_t u8;
+typedef uint64_t u64;
+typedef int64_t s64;
+
+/* Field elements are represented as a_0 + 2^56*a_1 + 2^112*a_2 + 2^168*a_3
+ * using 64-bit coefficients called 'limbs', and sometimes (for multiplication
+ * results) as b_0 + 2^56*b_1 + 2^112*b_2 + 2^168*b_3 + 2^224*b_4 + 2^280*b_5 +
+ * 2^336*b_6 using 128-bit coefficients called 'widelimbs'. A 4-limb
+ * representation is an 'felem'; a 7-widelimb representation is a 'widefelem'.
+ * Even within felems, bits of adjacent limbs overlap, and we don't always
+ * reduce the representations: we ensure that inputs to each felem
+ * multiplication satisfy a_i < 2^60, so outputs satisfy b_i < 4*2^60*2^60, and
+ * fit into a 128-bit word without overflow. The coefficients are then again
+ * partially reduced to obtain an felem satisfying a_i < 2^57. We only reduce
+ * to the unique minimal representation at the end of the computation. */
+
+typedef uint64_t limb;
+typedef __uint128_t widelimb;
+
+typedef limb felem[4];
+typedef widelimb widefelem[7];
+
+/* Field element represented as a byte arrary. 28*8 = 224 bits is also the
+ * group order size for the elliptic curve, and we also use this type for
+ * scalars for point multiplication. */
+typedef u8 felem_bytearray[28];
+
+static const felem_bytearray nistp224_curve_params[5] = {
+    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* p */
+     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+     0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
+    {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, /* a */
+     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+     0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE},
+    {0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, /* b */
+     0x32, 0x56, 0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA, 0x27, 0x0B,
+     0x39, 0x43, 0x23, 0x55, 0xFF, 0xB4},
+    {0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, /* x */
+     0x90, 0xB9, 0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22, 0x34, 0x32,
+     0x80, 0xD6, 0x11, 0x5C, 0x1D, 0x21},
+    {0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, /* y */
+     0xdf, 0xe6, 0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64, 0x44, 0xd5,
+     0x81, 0x99, 0x85, 0x00, 0x7e, 0x34}};
+
+/* Precomputed multiples of the standard generator
+ * Points are given in coordinates (X, Y, Z) where Z normally is 1
+ * (0 for the point at infinity).
+ * For each field element, slice a_0 is word 0, etc.
+ *
+ * The table has 2 * 16 elements, starting with the following:
+ * index | bits    | point
+ * ------+---------+------------------------------
+ *     0 | 0 0 0 0 | 0G
+ *     1 | 0 0 0 1 | 1G
+ *     2 | 0 0 1 0 | 2^56G
+ *     3 | 0 0 1 1 | (2^56 + 1)G
+ *     4 | 0 1 0 0 | 2^112G
+ *     5 | 0 1 0 1 | (2^112 + 1)G
+ *     6 | 0 1 1 0 | (2^112 + 2^56)G
+ *     7 | 0 1 1 1 | (2^112 + 2^56 + 1)G
+ *     8 | 1 0 0 0 | 2^168G
+ *     9 | 1 0 0 1 | (2^168 + 1)G
+ *    10 | 1 0 1 0 | (2^168 + 2^56)G
+ *    11 | 1 0 1 1 | (2^168 + 2^56 + 1)G
+ *    12 | 1 1 0 0 | (2^168 + 2^112)G
+ *    13 | 1 1 0 1 | (2^168 + 2^112 + 1)G
+ *    14 | 1 1 1 0 | (2^168 + 2^112 + 2^56)G
+ *    15 | 1 1 1 1 | (2^168 + 2^112 + 2^56 + 1)G
+ * followed by a copy of this with each element multiplied by 2^28.
+ *
+ * The reason for this is so that we can clock bits into four different
+ * locations when doing simple scalar multiplies against the base point,
+ * and then another four locations using the second 16 elements. */
+static const felem gmul[2][16][3] = {
+    {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
+     {{0x3280d6115c1d21, 0xc1d356c2112234, 0x7f321390b94a03, 0xb70e0cbd6bb4bf},
+      {0xd5819985007e34, 0x75a05a07476444, 0xfb4c22dfe6cd43, 0xbd376388b5f723},
+      {1, 0, 0, 0}},
+     {{0xfd9675666ebbe9, 0xbca7664d40ce5e, 0x2242df8d8a2a43, 0x1f49bbb0f99bc5},
+      {0x29e0b892dc9c43, 0xece8608436e662, 0xdc858f185310d0, 0x9812dd4eb8d321},
+      {1, 0, 0, 0}},
+     {{0x6d3e678d5d8eb8, 0x559eed1cb362f1, 0x16e9a3bbce8a3f, 0xeedcccd8c2a748},
+      {0xf19f90ed50266d, 0xabf2b4bf65f9df, 0x313865468fafec, 0x5cb379ba910a17},
+      {1, 0, 0, 0}},
+     {{0x0641966cab26e3, 0x91fb2991fab0a0, 0xefec27a4e13a0b, 0x0499aa8a5f8ebe},
+      {0x7510407766af5d, 0x84d929610d5450, 0x81d77aae82f706, 0x6916f6d4338c5b},
+      {1, 0, 0, 0}},
+     {{0xea95ac3b1f15c6, 0x086000905e82d4, 0xdd323ae4d1c8b1, 0x932b56be7685a3},
+      {0x9ef93dea25dbbf, 0x41665960f390f0, 0xfdec76dbe2a8a7, 0x523e80f019062a},
+      {1, 0, 0, 0}},
+     {{0x822fdd26732c73, 0xa01c83531b5d0f, 0x363f37347c1ba4, 0xc391b45c84725c},
+      {0xbbd5e1b2d6ad24, 0xddfbcde19dfaec, 0xc393da7e222a7f, 0x1efb7890ede244},
+      {1, 0, 0, 0}},
+     {{0x4c9e90ca217da1, 0xd11beca79159bb, 0xff8d33c2c98b7c, 0x2610b39409f849},
+      {0x44d1352ac64da0, 0xcdbb7b2c46b4fb, 0x966c079b753c89, 0xfe67e4e820b112},
+      {1, 0, 0, 0}},
+     {{0xe28cae2df5312d, 0xc71b61d16f5c6e, 0x79b7619a3e7c4c, 0x05c73240899b47},
+      {0x9f7f6382c73e3a, 0x18615165c56bda, 0x641fab2116fd56, 0x72855882b08394},
+      {1, 0, 0, 0}},
+     {{0x0469182f161c09, 0x74a98ca8d00fb5, 0xb89da93489a3e0, 0x41c98768fb0c1d},
+      {0xe5ea05fb32da81, 0x3dce9ffbca6855, 0x1cfe2d3fbf59e6, 0x0e5e03408738a7},
+      {1, 0, 0, 0}},
+     {{0xdab22b2333e87f, 0x4430137a5dd2f6, 0xe03ab9f738beb8, 0xcb0c5d0dc34f24},
+      {0x764a7df0c8fda5, 0x185ba5c3fa2044, 0x9281d688bcbe50, 0xc40331df893881},
+      {1, 0, 0, 0}},
+     {{0xb89530796f0f60, 0xade92bd26909a3, 0x1a0c83fb4884da, 0x1765bf22a5a984},
+      {0x772a9ee75db09e, 0x23bc6c67cec16f, 0x4c1edba8b14e2f, 0xe2a215d9611369},
+      {1, 0, 0, 0}},
+     {{0x571e509fb5efb3, 0xade88696410552, 0xc8ae85fada74fe, 0x6c7e4be83bbde3},
+      {0xff9f51160f4652, 0xb47ce2495a6539, 0xa2946c53b582f4, 0x286d2db3ee9a60},
+      {1, 0, 0, 0}},
+     {{0x40bbd5081a44af, 0x0995183b13926c, 0xbcefba6f47f6d0, 0x215619e9cc0057},
+      {0x8bc94d3b0df45e, 0xf11c54a3694f6f, 0x8631b93cdfe8b5, 0xe7e3f4b0982db9},
+      {1, 0, 0, 0}},
+     {{0xb17048ab3e1c7b, 0xac38f36ff8a1d8, 0x1c29819435d2c6, 0xc813132f4c07e9},
+      {0x2891425503b11f, 0x08781030579fea, 0xf5426ba5cc9674, 0x1e28ebf18562bc},
+      {1, 0, 0, 0}},
+     {{0x9f31997cc864eb, 0x06cd91d28b5e4c, 0xff17036691a973, 0xf1aef351497c58},
+      {0xdd1f2d600564ff, 0xdead073b1402db, 0x74a684435bd693, 0xeea7471f962558},
+      {1, 0, 0, 0}}},
+    {{{0, 0, 0, 0}, {0, 0, 0, 0}, {0, 0, 0, 0}},
+     {{0x9665266dddf554, 0x9613d78b60ef2d, 0xce27a34cdba417, 0xd35ab74d6afc31},
+      {0x85ccdd22deb15e, 0x2137e5783a6aab, 0xa141cffd8c93c6, 0x355a1830e90f2d},
+      {1, 0, 0, 0}},
+     {{0x1a494eadaade65, 0xd6da4da77fe53c, 0xe7992996abec86, 0x65c3553c6090e3},
+      {0xfa610b1fb09346, 0xf1c6540b8a4aaf, 0xc51a13ccd3cbab, 0x02995b1b18c28a},
+      {1, 0, 0, 0}},
+     {{0x7874568e7295ef, 0x86b419fbe38d04, 0xdc0690a7550d9a, 0xd3966a44beac33},
+      {0x2b7280ec29132f, 0xbeaa3b6a032df3, 0xdc7dd88ae41200, 0xd25e2513e3a100},
+      {1, 0, 0, 0}},
+     {{0x924857eb2efafd, 0xac2bce41223190, 0x8edaa1445553fc, 0x825800fd3562d5},
+      {0x8d79148ea96621, 0x23a01c3dd9ed8d, 0xaf8b219f9416b5, 0xd8db0cc277daea},
+      {1, 0, 0, 0}},
+     {{0x76a9c3b1a700f0, 0xe9acd29bc7e691, 0x69212d1a6b0327, 0x6322e97fe154be},
+      {0x469fc5465d62aa, 0x8d41ed18883b05, 0x1f8eae66c52b88, 0xe4fcbe9325be51},
+      {1, 0, 0, 0}},
+     {{0x825fdf583cac16, 0x020b857c7b023a, 0x683c17744b0165, 0x14ffd0a2daf2f1},
+      {0x323b36184218f9, 0x4944ec4e3b47d4, 0xc15b3080841acf, 0x0bced4b01a28bb},
+      {1, 0, 0, 0}},
+     {{0x92ac22230df5c4, 0x52f33b4063eda8, 0xcb3f19870c0c93, 0x40064f2ba65233},
+      {0xfe16f0924f8992, 0x012da25af5b517, 0x1a57bb24f723a6, 0x06f8bc76760def},
+      {1, 0, 0, 0}},
+     {{0x4a7084f7817cb9, 0xbcab0738ee9a78, 0x3ec11e11d9c326, 0xdc0fe90e0f1aae},
+      {0xcf639ea5f98390, 0x5c350aa22ffb74, 0x9afae98a4047b7, 0x956ec2d617fc45},
+      {1, 0, 0, 0}},
+     {{0x4306d648c1be6a, 0x9247cd8bc9a462, 0xf5595e377d2f2e, 0xbd1c3caff1a52e},
+      {0x045e14472409d0, 0x29f3e17078f773, 0x745a602b2d4f7d, 0x191837685cdfbb},
+      {1, 0, 0, 0}},
+     {{0x5b6ee254a8cb79, 0x4953433f5e7026, 0xe21faeb1d1def4, 0xc4c225785c09de},
+      {0x307ce7bba1e518, 0x31b125b1036db8, 0x47e91868839e8f, 0xc765866e33b9f3},
+      {1, 0, 0, 0}},
+     {{0x3bfece24f96906, 0x4794da641e5093, 0xde5df64f95db26, 0x297ecd89714b05},
+      {0x701bd3ebb2c3aa, 0x7073b4f53cb1d5, 0x13c5665658af16, 0x9895089d66fe58},
+      {1, 0, 0, 0}},
+     {{0x0fef05f78c4790, 0x2d773633b05d2e, 0x94229c3a951c94, 0xbbbd70df4911bb},
+      {0xb2c6963d2c1168, 0x105f47a72b0d73, 0x9fdf6111614080, 0x7b7e94b39e67b0},
+      {1, 0, 0, 0}},
+     {{0xad1a7d6efbe2b3, 0xf012482c0da69d, 0x6b3bdf12438345, 0x40d7558d7aa4d9},
+      {0x8a09fffb5c6d3d, 0x9a356e5d9ffd38, 0x5973f15f4f9b1c, 0xdcd5f59f63c3ea},
+      {1, 0, 0, 0}},
+     {{0xacf39f4c5ca7ab, 0x4c8071cc5fd737, 0xc64e3602cd1184, 0x0acd4644c9abba},
+      {0x6c011a36d8bf6e, 0xfecd87ba24e32a, 0x19f6f56574fad8, 0x050b204ced9405},
+      {1, 0, 0, 0}},
+     {{0xed4f1cae7d9a96, 0x5ceef7ad94c40a, 0x778e4a3bf3ef9b, 0x7405783dc3b55e},
+      {0x32477c61b6e8c6, 0xb46a97570f018b, 0x91176d0a7e95d1, 0x3df90fbc4c7d0e},
+      {1, 0, 0, 0}}}};
+
+/* Helper functions to convert field elements to/from internal representation */
+static void bin28_to_felem(felem out, const u8 in[28]) {
+  out[0] = *((const uint64_t *)(in)) & 0x00ffffffffffffff;
+  out[1] = (*((const uint64_t *)(in + 7))) & 0x00ffffffffffffff;
+  out[2] = (*((const uint64_t *)(in + 14))) & 0x00ffffffffffffff;
+  out[3] = (*((const uint64_t *)(in + 20))) >> 8;
+}
+
+static void felem_to_bin28(u8 out[28], const felem in) {
+  unsigned i;
+  for (i = 0; i < 7; ++i) {
+    out[i] = in[0] >> (8 * i);
+    out[i + 7] = in[1] >> (8 * i);
+    out[i + 14] = in[2] >> (8 * i);
+    out[i + 21] = in[3] >> (8 * i);
+  }
+}
+
+/* To preserve endianness when using BN_bn2bin and BN_bin2bn */
+static void flip_endian(u8 *out, const u8 *in, unsigned len) {
+  unsigned i;
+  for (i = 0; i < len; ++i) {
+    out[i] = in[len - 1 - i];
+  }
+}
+
+/* From OpenSSL BIGNUM to internal representation */
+static int BN_to_felem(felem out, const BIGNUM *bn) {
+  /* BN_bn2bin eats leading zeroes */
+  felem_bytearray b_out;
+  memset(b_out, 0, sizeof(b_out));
+  unsigned num_bytes = BN_num_bytes(bn);
+  if (num_bytes > sizeof(b_out) ||
+      BN_is_negative(bn)) {
+    OPENSSL_PUT_ERROR(EC, EC_R_BIGNUM_OUT_OF_RANGE);
+    return 0;
+  }
+
+  felem_bytearray b_in;
+  num_bytes = BN_bn2bin(bn, b_in);
+  flip_endian(b_out, b_in, num_bytes);
+  bin28_to_felem(out, b_out);
+  return 1;
+}
+
+/* From internal representation to OpenSSL BIGNUM */
+static BIGNUM *felem_to_BN(BIGNUM *out, const felem in) {
+  felem_bytearray b_in, b_out;
+  felem_to_bin28(b_in, in);
+  flip_endian(b_out, b_in, sizeof(b_out));
+  return BN_bin2bn(b_out, sizeof(b_out), out);
+}
+
+/* Field operations, using the internal representation of field elements.
+ * NB! These operations are specific to our point multiplication and cannot be
+ * expected to be correct in general - e.g., multiplication with a large scalar
+ * will cause an overflow. */
+
+static void felem_one(felem out) {
+  out[0] = 1;
+  out[1] = 0;
+  out[2] = 0;
+  out[3] = 0;
+}
+
+static void felem_assign(felem out, const felem in) {
+  out[0] = in[0];
+  out[1] = in[1];
+  out[2] = in[2];
+  out[3] = in[3];
+}
+
+/* Sum two field elements: out += in */
+static void felem_sum(felem out, const felem in) {
+  out[0] += in[0];
+  out[1] += in[1];
+  out[2] += in[2];
+  out[3] += in[3];
+}
+
+/* Get negative value: out = -in */
+/* Assumes in[i] < 2^57 */
+static void felem_neg(felem out, const felem in) {
+  static const limb two58p2 = (((limb)1) << 58) + (((limb)1) << 2);
+  static const limb two58m2 = (((limb)1) << 58) - (((limb)1) << 2);
+  static const limb two58m42m2 =
+      (((limb)1) << 58) - (((limb)1) << 42) - (((limb)1) << 2);
+
+  /* Set to 0 mod 2^224-2^96+1 to ensure out > in */
+  out[0] = two58p2 - in[0];
+  out[1] = two58m42m2 - in[1];
+  out[2] = two58m2 - in[2];
+  out[3] = two58m2 - in[3];
+}
+
+/* Subtract field elements: out -= in */
+/* Assumes in[i] < 2^57 */
+static void felem_diff(felem out, const felem in) {
+  static const limb two58p2 = (((limb)1) << 58) + (((limb)1) << 2);
+  static const limb two58m2 = (((limb)1) << 58) - (((limb)1) << 2);
+  static const limb two58m42m2 =
+      (((limb)1) << 58) - (((limb)1) << 42) - (((limb)1) << 2);
+
+  /* Add 0 mod 2^224-2^96+1 to ensure out > in */
+  out[0] += two58p2;
+  out[1] += two58m42m2;
+  out[2] += two58m2;
+  out[3] += two58m2;
+
+  out[0] -= in[0];
+  out[1] -= in[1];
+  out[2] -= in[2];
+  out[3] -= in[3];
+}
+
+/* Subtract in unreduced 128-bit mode: out -= in */
+/* Assumes in[i] < 2^119 */
+static void widefelem_diff(widefelem out, const widefelem in) {
+  static const widelimb two120 = ((widelimb)1) << 120;
+  static const widelimb two120m64 =
+      (((widelimb)1) << 120) - (((widelimb)1) << 64);
+  static const widelimb two120m104m64 =
+      (((widelimb)1) << 120) - (((widelimb)1) << 104) - (((widelimb)1) << 64);
+
+  /* Add 0 mod 2^224-2^96+1 to ensure out > in */
+  out[0] += two120;
+  out[1] += two120m64;
+  out[2] += two120m64;
+  out[3] += two120;
+  out[4] += two120m104m64;
+  out[5] += two120m64;
+  out[6] += two120m64;
+
+  out[0] -= in[0];
+  out[1] -= in[1];
+  out[2] -= in[2];
+  out[3] -= in[3];
+  out[4] -= in[4];
+  out[5] -= in[5];
+  out[6] -= in[6];
+}
+
+/* Subtract in mixed mode: out128 -= in64 */
+/* in[i] < 2^63 */
+static void felem_diff_128_64(widefelem out, const felem in) {
+  static const widelimb two64p8 = (((widelimb)1) << 64) + (((widelimb)1) << 8);
+  static const widelimb two64m8 = (((widelimb)1) << 64) - (((widelimb)1) << 8);
+  static const widelimb two64m48m8 =
+      (((widelimb)1) << 64) - (((widelimb)1) << 48) - (((widelimb)1) << 8);
+
+  /* Add 0 mod 2^224-2^96+1 to ensure out > in */
+  out[0] += two64p8;
+  out[1] += two64m48m8;
+  out[2] += two64m8;
+  out[3] += two64m8;
+
+  out[0] -= in[0];
+  out[1] -= in[1];
+  out[2] -= in[2];
+  out[3] -= in[3];
+}
+
+/* Multiply a field element by a scalar: out = out * scalar
+ * The scalars we actually use are small, so results fit without overflow */
+static void felem_scalar(felem out, const limb scalar) {
+  out[0] *= scalar;
+  out[1] *= scalar;
+  out[2] *= scalar;
+  out[3] *= scalar;
+}
+
+/* Multiply an unreduced field element by a scalar: out = out * scalar
+ * The scalars we actually use are small, so results fit without overflow */
+static void widefelem_scalar(widefelem out, const widelimb scalar) {
+  out[0] *= scalar;
+  out[1] *= scalar;
+  out[2] *= scalar;
+  out[3] *= scalar;
+  out[4] *= scalar;
+  out[5] *= scalar;
+  out[6] *= scalar;
+}
+
+/* Square a field element: out = in^2 */
+static void felem_square(widefelem out, const felem in) {
+  limb tmp0, tmp1, tmp2;
+  tmp0 = 2 * in[0];
+  tmp1 = 2 * in[1];
+  tmp2 = 2 * in[2];
+  out[0] = ((widelimb)in[0]) * in[0];
+  out[1] = ((widelimb)in[0]) * tmp1;
+  out[2] = ((widelimb)in[0]) * tmp2 + ((widelimb)in[1]) * in[1];
+  out[3] = ((widelimb)in[3]) * tmp0 + ((widelimb)in[1]) * tmp2;
+  out[4] = ((widelimb)in[3]) * tmp1 + ((widelimb)in[2]) * in[2];
+  out[5] = ((widelimb)in[3]) * tmp2;
+  out[6] = ((widelimb)in[3]) * in[3];
+}
+
+/* Multiply two field elements: out = in1 * in2 */
+static void felem_mul(widefelem out, const felem in1, const felem in2) {
+  out[0] = ((widelimb)in1[0]) * in2[0];
+  out[1] = ((widelimb)in1[0]) * in2[1] + ((widelimb)in1[1]) * in2[0];
+  out[2] = ((widelimb)in1[0]) * in2[2] + ((widelimb)in1[1]) * in2[1] +
+           ((widelimb)in1[2]) * in2[0];
+  out[3] = ((widelimb)in1[0]) * in2[3] + ((widelimb)in1[1]) * in2[2] +
+           ((widelimb)in1[2]) * in2[1] + ((widelimb)in1[3]) * in2[0];
+  out[4] = ((widelimb)in1[1]) * in2[3] + ((widelimb)in1[2]) * in2[2] +
+           ((widelimb)in1[3]) * in2[1];
+  out[5] = ((widelimb)in1[2]) * in2[3] + ((widelimb)in1[3]) * in2[2];
+  out[6] = ((widelimb)in1[3]) * in2[3];
+}
+
+/* Reduce seven 128-bit coefficients to four 64-bit coefficients.
+ * Requires in[i] < 2^126,
+ * ensures out[0] < 2^56, out[1] < 2^56, out[2] < 2^56, out[3] <= 2^56 + 2^16 */
+static void felem_reduce(felem out, const widefelem in) {
+  static const widelimb two127p15 =
+      (((widelimb)1) << 127) + (((widelimb)1) << 15);
+  static const widelimb two127m71 =
+      (((widelimb)1) << 127) - (((widelimb)1) << 71);
+  static const widelimb two127m71m55 =
+      (((widelimb)1) << 127) - (((widelimb)1) << 71) - (((widelimb)1) << 55);
+  widelimb output[5];
+
+  /* Add 0 mod 2^224-2^96+1 to ensure all differences are positive */
+  output[0] = in[0] + two127p15;
+  output[1] = in[1] + two127m71m55;
+  output[2] = in[2] + two127m71;
+  output[3] = in[3];
+  output[4] = in[4];
+
+  /* Eliminate in[4], in[5], in[6] */
+  output[4] += in[6] >> 16;
+  output[3] += (in[6] & 0xffff) << 40;
+  output[2] -= in[6];
+
+  output[3] += in[5] >> 16;
+  output[2] += (in[5] & 0xffff) << 40;
+  output[1] -= in[5];
+
+  output[2] += output[4] >> 16;
+  output[1] += (output[4] & 0xffff) << 40;
+  output[0] -= output[4];
+
+  /* Carry 2 -> 3 -> 4 */
+  output[3] += output[2] >> 56;
+  output[2] &= 0x00ffffffffffffff;
+
+  output[4] = output[3] >> 56;
+  output[3] &= 0x00ffffffffffffff;
+
+  /* Now output[2] < 2^56, output[3] < 2^56, output[4] < 2^72 */
+
+  /* Eliminate output[4] */
+  output[2] += output[4] >> 16;
+  /* output[2] < 2^56 + 2^56 = 2^57 */
+  output[1] += (output[4] & 0xffff) << 40;
+  output[0] -= output[4];
+
+  /* Carry 0 -> 1 -> 2 -> 3 */
+  output[1] += output[0] >> 56;
+  out[0] = output[0] & 0x00ffffffffffffff;
+
+  output[2] += output[1] >> 56;
+  /* output[2] < 2^57 + 2^72 */
+  out[1] = output[1] & 0x00ffffffffffffff;
+  output[3] += output[2] >> 56;
+  /* output[3] <= 2^56 + 2^16 */
+  out[2] = output[2] & 0x00ffffffffffffff;
+
+  /* out[0] < 2^56, out[1] < 2^56, out[2] < 2^56,
+   * out[3] <= 2^56 + 2^16 (due to final carry),
+   * so out < 2*p */
+  out[3] = output[3];
+}
+
+static void felem_square_reduce(felem out, const felem in) {
+  widefelem tmp;
+  felem_square(tmp, in);
+  felem_reduce(out, tmp);
+}
+
+static void felem_mul_reduce(felem out, const felem in1, const felem in2) {
+  widefelem tmp;
+  felem_mul(tmp, in1, in2);
+  felem_reduce(out, tmp);
+}
+
+/* Reduce to unique minimal representation.
+ * Requires 0 <= in < 2*p (always call felem_reduce first) */
+static void felem_contract(felem out, const felem in) {
+  static const int64_t two56 = ((limb)1) << 56;
+  /* 0 <= in < 2*p, p = 2^224 - 2^96 + 1 */
+  /* if in > p , reduce in = in - 2^224 + 2^96 - 1 */
+  int64_t tmp[4], a;
+  tmp[0] = in[0];
+  tmp[1] = in[1];
+  tmp[2] = in[2];
+  tmp[3] = in[3];
+  /* Case 1: a = 1 iff in >= 2^224 */
+  a = (in[3] >> 56);
+  tmp[0] -= a;
+  tmp[1] += a << 40;
+  tmp[3] &= 0x00ffffffffffffff;
+  /* Case 2: a = 0 iff p <= in < 2^224, i.e., the high 128 bits are all 1 and
+   * the lower part is non-zero */
+  a = ((in[3] & in[2] & (in[1] | 0x000000ffffffffff)) + 1) |
+      (((int64_t)(in[0] + (in[1] & 0x000000ffffffffff)) - 1) >> 63);
+  a &= 0x00ffffffffffffff;
+  /* turn a into an all-one mask (if a = 0) or an all-zero mask */
+  a = (a - 1) >> 63;
+  /* subtract 2^224 - 2^96 + 1 if a is all-one */
+  tmp[3] &= a ^ 0xffffffffffffffff;
+  tmp[2] &= a ^ 0xffffffffffffffff;
+  tmp[1] &= (a ^ 0xffffffffffffffff) | 0x000000ffffffffff;
+  tmp[0] -= 1 & a;
+
+  /* eliminate negative coefficients: if tmp[0] is negative, tmp[1] must
+   * be non-zero, so we only need one step */
+  a = tmp[0] >> 63;
+  tmp[0] += two56 & a;
+  tmp[1] -= 1 & a;
+
+  /* carry 1 -> 2 -> 3 */
+  tmp[2] += tmp[1] >> 56;
+  tmp[1] &= 0x00ffffffffffffff;
+
+  tmp[3] += tmp[2] >> 56;
+  tmp[2] &= 0x00ffffffffffffff;
+
+  /* Now 0 <= out < p */
+  out[0] = tmp[0];
+  out[1] = tmp[1];
+  out[2] = tmp[2];
+  out[3] = tmp[3];
+}
+
+/* Zero-check: returns 1 if input is 0, and 0 otherwise. We know that field
+ * elements are reduced to in < 2^225, so we only need to check three cases: 0,
+ * 2^224 - 2^96 + 1, and 2^225 - 2^97 + 2 */
+static limb felem_is_zero(const felem in) {
+  limb zero = in[0] | in[1] | in[2] | in[3];
+  zero = (((int64_t)(zero)-1) >> 63) & 1;
+
+  limb two224m96p1 = (in[0] ^ 1) | (in[1] ^ 0x00ffff0000000000) |
+                     (in[2] ^ 0x00ffffffffffffff) |
+                     (in[3] ^ 0x00ffffffffffffff);
+  two224m96p1 = (((int64_t)(two224m96p1)-1) >> 63) & 1;
+  limb two225m97p2 = (in[0] ^ 2) | (in[1] ^ 0x00fffe0000000000) |
+                     (in[2] ^ 0x00ffffffffffffff) |
+                     (in[3] ^ 0x01ffffffffffffff);
+  two225m97p2 = (((int64_t)(two225m97p2)-1) >> 63) & 1;
+  return (zero | two224m96p1 | two225m97p2);
+}
+
+static limb felem_is_zero_int(const felem in) {
+  return (int)(felem_is_zero(in) & ((limb)1));
+}
+
+/* Invert a field element */
+/* Computation chain copied from djb's code */
+static void felem_inv(felem out, const felem in) {
+  felem ftmp, ftmp2, ftmp3, ftmp4;
+  widefelem tmp;
+  unsigned i;
+
+  felem_square(tmp, in);
+  felem_reduce(ftmp, tmp); /* 2 */
+  felem_mul(tmp, in, ftmp);
+  felem_reduce(ftmp, tmp); /* 2^2 - 1 */
+  felem_square(tmp, ftmp);
+  felem_reduce(ftmp, tmp); /* 2^3 - 2 */
+  felem_mul(tmp, in, ftmp);
+  felem_reduce(ftmp, tmp); /* 2^3 - 1 */
+  felem_square(tmp, ftmp);
+  felem_reduce(ftmp2, tmp); /* 2^4 - 2 */
+  felem_square(tmp, ftmp2);
+  felem_reduce(ftmp2, tmp); /* 2^5 - 4 */
+  felem_square(tmp, ftmp2);
+  felem_reduce(ftmp2, tmp); /* 2^6 - 8 */
+  felem_mul(tmp, ftmp2, ftmp);
+  felem_reduce(ftmp, tmp); /* 2^6 - 1 */
+  felem_square(tmp, ftmp);
+  felem_reduce(ftmp2, tmp); /* 2^7 - 2 */
+  for (i = 0; i < 5; ++i) { /* 2^12 - 2^6 */
+    felem_square(tmp, ftmp2);
+    felem_reduce(ftmp2, tmp);
+  }
+  felem_mul(tmp, ftmp2, ftmp);
+  felem_reduce(ftmp2, tmp); /* 2^12 - 1 */
+  felem_square(tmp, ftmp2);
+  felem_reduce(ftmp3, tmp); /* 2^13 - 2 */
+  for (i = 0; i < 11; ++i) {/* 2^24 - 2^12 */
+    felem_square(tmp, ftmp3);
+    felem_reduce(ftmp3, tmp);
+  }
+  felem_mul(tmp, ftmp3, ftmp2);
+  felem_reduce(ftmp2, tmp); /* 2^24 - 1 */
+  felem_square(tmp, ftmp2);
+  felem_reduce(ftmp3, tmp); /* 2^25 - 2 */
+  for (i = 0; i < 23; ++i) {/* 2^48 - 2^24 */
+    felem_square(tmp, ftmp3);
+    felem_reduce(ftmp3, tmp);
+  }
+  felem_mul(tmp, ftmp3, ftmp2);
+  felem_reduce(ftmp3, tmp); /* 2^48 - 1 */
+  felem_square(tmp, ftmp3);
+  felem_reduce(ftmp4, tmp); /* 2^49 - 2 */
+  for (i = 0; i < 47; ++i) {/* 2^96 - 2^48 */
+    felem_square(tmp, ftmp4);
+    felem_reduce(ftmp4, tmp);
+  }
+  felem_mul(tmp, ftmp3, ftmp4);
+  felem_reduce(ftmp3, tmp); /* 2^96 - 1 */
+  felem_square(tmp, ftmp3);
+  felem_reduce(ftmp4, tmp); /* 2^97 - 2 */
+  for (i = 0; i < 23; ++i) {/* 2^120 - 2^24 */
+    felem_square(tmp, ftmp4);
+    felem_reduce(ftmp4, tmp);
+  }
+  felem_mul(tmp, ftmp2, ftmp4);
+  felem_reduce(ftmp2, tmp); /* 2^120 - 1 */
+  for (i = 0; i < 6; ++i) { /* 2^126 - 2^6 */
+    felem_square(tmp, ftmp2);
+    felem_reduce(ftmp2, tmp);
+  }
+  felem_mul(tmp, ftmp2, ftmp);
+  felem_reduce(ftmp, tmp); /* 2^126 - 1 */
+  felem_square(tmp, ftmp);
+  felem_reduce(ftmp, tmp); /* 2^127 - 2 */
+  felem_mul(tmp, ftmp, in);
+  felem_reduce(ftmp, tmp); /* 2^127 - 1 */
+  for (i = 0; i < 97; ++i) {/* 2^224 - 2^97 */
+    felem_square(tmp, ftmp);
+    felem_reduce(ftmp, tmp);
+  }
+  felem_mul(tmp, ftmp, ftmp3);
+  felem_reduce(out, tmp); /* 2^224 - 2^96 - 1 */
+}
+
+/* Copy in constant time:
+ * if icopy == 1, copy in to out,
+ * if icopy == 0, copy out to itself. */
+static void copy_conditional(felem out, const felem in, limb icopy) {
+  unsigned i;
+  /* icopy is a (64-bit) 0 or 1, so copy is either all-zero or all-one */
+  const limb copy = -icopy;
+  for (i = 0; i < 4; ++i) {
+    const limb tmp = copy & (in[i] ^ out[i]);
+    out[i] ^= tmp;
+  }
+}
+
+/* ELLIPTIC CURVE POINT OPERATIONS
+ *
+ * Points are represented in Jacobian projective coordinates:
+ * (X, Y, Z) corresponds to the affine point (X/Z^2, Y/Z^3),
+ * or to the point at infinity if Z == 0. */
+
+/* Double an elliptic curve point:
+ * (X', Y', Z') = 2 * (X, Y, Z), where
+ * X' = (3 * (X - Z^2) * (X + Z^2))^2 - 8 * X * Y^2
+ * Y' = 3 * (X - Z^2) * (X + Z^2) * (4 * X * Y^2 - X') - 8 * Y^2
+ * Z' = (Y + Z)^2 - Y^2 - Z^2 = 2 * Y * Z
+ * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed,
+ * while x_out == y_in is not (maybe this works, but it's not tested). */
+static void point_double(felem x_out, felem y_out, felem z_out,
+                         const felem x_in, const felem y_in, const felem z_in) {
+  widefelem tmp, tmp2;
+  felem delta, gamma, beta, alpha, ftmp, ftmp2;
+
+  felem_assign(ftmp, x_in);
+  felem_assign(ftmp2, x_in);
+
+  /* delta = z^2 */
+  felem_square(tmp, z_in);
+  felem_reduce(delta, tmp);
+
+  /* gamma = y^2 */
+  felem_square(tmp, y_in);
+  felem_reduce(gamma, tmp);
+
+  /* beta = x*gamma */
+  felem_mul(tmp, x_in, gamma);
+  felem_reduce(beta, tmp);
+
+  /* alpha = 3*(x-delta)*(x+delta) */
+  felem_diff(ftmp, delta);
+  /* ftmp[i] < 2^57 + 2^58 + 2 < 2^59 */
+  felem_sum(ftmp2, delta);
+  /* ftmp2[i] < 2^57 + 2^57 = 2^58 */
+  felem_scalar(ftmp2, 3);
+  /* ftmp2[i] < 3 * 2^58 < 2^60 */
+  felem_mul(tmp, ftmp, ftmp2);
+  /* tmp[i] < 2^60 * 2^59 * 4 = 2^121 */
+  felem_reduce(alpha, tmp);
+
+  /* x' = alpha^2 - 8*beta */
+  felem_square(tmp, alpha);
+  /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
+  felem_assign(ftmp, beta);
+  felem_scalar(ftmp, 8);
+  /* ftmp[i] < 8 * 2^57 = 2^60 */
+  felem_diff_128_64(tmp, ftmp);
+  /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
+  felem_reduce(x_out, tmp);
+
+  /* z' = (y + z)^2 - gamma - delta */
+  felem_sum(delta, gamma);
+  /* delta[i] < 2^57 + 2^57 = 2^58 */
+  felem_assign(ftmp, y_in);
+  felem_sum(ftmp, z_in);
+  /* ftmp[i] < 2^57 + 2^57 = 2^58 */
+  felem_square(tmp, ftmp);
+  /* tmp[i] < 4 * 2^58 * 2^58 = 2^118 */
+  felem_diff_128_64(tmp, delta);
+  /* tmp[i] < 2^118 + 2^64 + 8 < 2^119 */
+  felem_reduce(z_out, tmp);
+
+  /* y' = alpha*(4*beta - x') - 8*gamma^2 */
+  felem_scalar(beta, 4);
+  /* beta[i] < 4 * 2^57 = 2^59 */
+  felem_diff(beta, x_out);
+  /* beta[i] < 2^59 + 2^58 + 2 < 2^60 */
+  felem_mul(tmp, alpha, beta);
+  /* tmp[i] < 4 * 2^57 * 2^60 = 2^119 */
+  felem_square(tmp2, gamma);
+  /* tmp2[i] < 4 * 2^57 * 2^57 = 2^116 */
+  widefelem_scalar(tmp2, 8);
+  /* tmp2[i] < 8 * 2^116 = 2^119 */
+  widefelem_diff(tmp, tmp2);
+  /* tmp[i] < 2^119 + 2^120 < 2^121 */
+  felem_reduce(y_out, tmp);
+}
+
+/* Add two elliptic curve points:
+ * (X_1, Y_1, Z_1) + (X_2, Y_2, Z_2) = (X_3, Y_3, Z_3), where
+ * X_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1)^2 - (Z_1^2 * X_2 - Z_2^2 * X_1)^3 -
+ * 2 * Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^2
+ * Y_3 = (Z_1^3 * Y_2 - Z_2^3 * Y_1) * (Z_2^2 * X_1 * (Z_1^2 * X_2 - Z_2^2 *
+ * X_1)^2 - X_3) -
+ *        Z_2^3 * Y_1 * (Z_1^2 * X_2 - Z_2^2 * X_1)^3
+ * Z_3 = (Z_1^2 * X_2 - Z_2^2 * X_1) * (Z_1 * Z_2)
+ *
+ * This runs faster if 'mixed' is set, which requires Z_2 = 1 or Z_2 = 0. */
+
+/* This function is not entirely constant-time: it includes a branch for
+ * checking whether the two input points are equal, (while not equal to the
+ * point at infinity). This case never happens during single point
+ * multiplication, so there is no timing leak for ECDH or ECDSA signing. */
+static void point_add(felem x3, felem y3, felem z3, const felem x1,
+                      const felem y1, const felem z1, const int mixed,
+                      const felem x2, const felem y2, const felem z2) {
+  felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, x_out, y_out, z_out;
+  widefelem tmp, tmp2;
+  limb z1_is_zero, z2_is_zero, x_equal, y_equal;
+
+  if (!mixed) {
+    /* ftmp2 = z2^2 */
+    felem_square(tmp, z2);
+    felem_reduce(ftmp2, tmp);
+
+    /* ftmp4 = z2^3 */
+    felem_mul(tmp, ftmp2, z2);
+    felem_reduce(ftmp4, tmp);
+
+    /* ftmp4 = z2^3*y1 */
+    felem_mul(tmp2, ftmp4, y1);
+    felem_reduce(ftmp4, tmp2);
+
+    /* ftmp2 = z2^2*x1 */
+    felem_mul(tmp2, ftmp2, x1);
+    felem_reduce(ftmp2, tmp2);
+  } else {
+    /* We'll assume z2 = 1 (special case z2 = 0 is handled later) */
+
+    /* ftmp4 = z2^3*y1 */
+    felem_assign(ftmp4, y1);
+
+    /* ftmp2 = z2^2*x1 */
+    felem_assign(ftmp2, x1);
+  }
+
+  /* ftmp = z1^2 */
+  felem_square(tmp, z1);
+  felem_reduce(ftmp, tmp);
+
+  /* ftmp3 = z1^3 */
+  felem_mul(tmp, ftmp, z1);
+  felem_reduce(ftmp3, tmp);
+
+  /* tmp = z1^3*y2 */
+  felem_mul(tmp, ftmp3, y2);
+  /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
+
+  /* ftmp3 = z1^3*y2 - z2^3*y1 */
+  felem_diff_128_64(tmp, ftmp4);
+  /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
+  felem_reduce(ftmp3, tmp);
+
+  /* tmp = z1^2*x2 */
+  felem_mul(tmp, ftmp, x2);
+  /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
+
+  /* ftmp = z1^2*x2 - z2^2*x1 */
+  felem_diff_128_64(tmp, ftmp2);
+  /* tmp[i] < 2^116 + 2^64 + 8 < 2^117 */
+  felem_reduce(ftmp, tmp);
+
+  /* the formulae are incorrect if the points are equal
+   * so we check for this and do doubling if this happens */
+  x_equal = felem_is_zero(ftmp);
+  y_equal = felem_is_zero(ftmp3);
+  z1_is_zero = felem_is_zero(z1);
+  z2_is_zero = felem_is_zero(z2);
+  /* In affine coordinates, (X_1, Y_1) == (X_2, Y_2) */
+  if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) {
+    point_double(x3, y3, z3, x1, y1, z1);
+    return;
+  }
+
+  /* ftmp5 = z1*z2 */
+  if (!mixed) {
+    felem_mul(tmp, z1, z2);
+    felem_reduce(ftmp5, tmp);
+  } else {
+    /* special case z2 = 0 is handled later */
+    felem_assign(ftmp5, z1);
+  }
+
+  /* z_out = (z1^2*x2 - z2^2*x1)*(z1*z2) */
+  felem_mul(tmp, ftmp, ftmp5);
+  felem_reduce(z_out, tmp);
+
+  /* ftmp = (z1^2*x2 - z2^2*x1)^2 */
+  felem_assign(ftmp5, ftmp);
+  felem_square(tmp, ftmp);
+  felem_reduce(ftmp, tmp);
+
+  /* ftmp5 = (z1^2*x2 - z2^2*x1)^3 */
+  felem_mul(tmp, ftmp, ftmp5);
+  felem_reduce(ftmp5, tmp);
+
+  /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
+  felem_mul(tmp, ftmp2, ftmp);
+  felem_reduce(ftmp2, tmp);
+
+  /* tmp = z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
+  felem_mul(tmp, ftmp4, ftmp5);
+  /* tmp[i] < 4 * 2^57 * 2^57 = 2^116 */
+
+  /* tmp2 = (z1^3*y2 - z2^3*y1)^2 */
+  felem_square(tmp2, ftmp3);
+  /* tmp2[i] < 4 * 2^57 * 2^57 < 2^116 */
+
+  /* tmp2 = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 */
+  felem_diff_128_64(tmp2, ftmp5);
+  /* tmp2[i] < 2^116 + 2^64 + 8 < 2^117 */
+
+  /* ftmp5 = 2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
+  felem_assign(ftmp5, ftmp2);
+  felem_scalar(ftmp5, 2);
+  /* ftmp5[i] < 2 * 2^57 = 2^58 */
+
+  /* x_out = (z1^3*y2 - z2^3*y1)^2 - (z1^2*x2 - z2^2*x1)^3 -
+     2*z2^2*x1*(z1^2*x2 - z2^2*x1)^2 */
+  felem_diff_128_64(tmp2, ftmp5);
+  /* tmp2[i] < 2^117 + 2^64 + 8 < 2^118 */
+  felem_reduce(x_out, tmp2);
+
+  /* ftmp2 = z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out */
+  felem_diff(ftmp2, x_out);
+  /* ftmp2[i] < 2^57 + 2^58 + 2 < 2^59 */
+
+  /* tmp2 = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) */
+  felem_mul(tmp2, ftmp3, ftmp2);
+  /* tmp2[i] < 4 * 2^57 * 2^59 = 2^118 */
+
+  /* y_out = (z1^3*y2 - z2^3*y1)*(z2^2*x1*(z1^2*x2 - z2^2*x1)^2 - x_out) -
+     z2^3*y1*(z1^2*x2 - z2^2*x1)^3 */
+  widefelem_diff(tmp2, tmp);
+  /* tmp2[i] < 2^118 + 2^120 < 2^121 */
+  felem_reduce(y_out, tmp2);
+
+  /* the result (x_out, y_out, z_out) is incorrect if one of the inputs is
+   * the point at infinity, so we need to check for this separately */
+
+  /* if point 1 is at infinity, copy point 2 to output, and vice versa */
+  copy_conditional(x_out, x2, z1_is_zero);
+  copy_conditional(x_out, x1, z2_is_zero);
+  copy_conditional(y_out, y2, z1_is_zero);
+  copy_conditional(y_out, y1, z2_is_zero);
+  copy_conditional(z_out, z2, z1_is_zero);
+  copy_conditional(z_out, z1, z2_is_zero);
+  felem_assign(x3, x_out);
+  felem_assign(y3, y_out);
+  felem_assign(z3, z_out);
+}
+
+/* select_point selects the |idx|th point from a precomputation table and
+ * copies it to out. */
+static void select_point(const u64 idx, unsigned int size,
+                         const felem pre_comp[/*size*/][3], felem out[3]) {
+  unsigned i, j;
+  limb *outlimbs = &out[0][0];
+  memset(outlimbs, 0, 3 * sizeof(felem));
+
+  for (i = 0; i < size; i++) {
+    const limb *inlimbs = &pre_comp[i][0][0];
+    u64 mask = i ^ idx;
+    mask |= mask >> 4;
+    mask |= mask >> 2;
+    mask |= mask >> 1;
+    mask &= 1;
+    mask--;
+    for (j = 0; j < 4 * 3; j++) {
+      outlimbs[j] |= inlimbs[j] & mask;
+    }
+  }
+}
+
+/* get_bit returns the |i|th bit in |in| */
+static char get_bit(const felem_bytearray in, unsigned i) {
+  if (i >= 224) {
+    return 0;
+  }
+  return (in[i >> 3] >> (i & 7)) & 1;
+}
+
+/* Interleaved point multiplication using precomputed point multiples:
+ * The small point multiples 0*P, 1*P, ..., 16*P are in pre_comp[],
+ * the scalars in scalars[]. If g_scalar is non-NULL, we also add this multiple
+ * of the generator, using certain (large) precomputed multiples in g_pre_comp.
+ * Output point (X, Y, Z) is stored in x_out, y_out, z_out */
+static void batch_mul(felem x_out, felem y_out, felem z_out,
+                      const felem_bytearray scalars[],
+                      const unsigned num_points, const u8 *g_scalar,
+                      const int mixed, const felem pre_comp[][17][3],
+                      const felem g_pre_comp[2][16][3]) {
+  int i, skip;
+  unsigned num;
+  unsigned gen_mul = (g_scalar != NULL);
+  felem nq[3], tmp[4];
+  u64 bits;
+  u8 sign, digit;
+
+  /* set nq to the point at infinity */
+  memset(nq, 0, 3 * sizeof(felem));
+
+  /* Loop over all scalars msb-to-lsb, interleaving additions
+   * of multiples of the generator (two in each of the last 28 rounds)
+   * and additions of other points multiples (every 5th round). */
+  skip = 1; /* save two point operations in the first round */
+  for (i = (num_points ? 220 : 27); i >= 0; --i) {
+    /* double */
+    if (!skip) {
+      point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]);
+    }
+
+    /* add multiples of the generator */
+    if (gen_mul && (i <= 27)) {
+      /* first, look 28 bits upwards */
+      bits = get_bit(g_scalar, i + 196) << 3;
+      bits |= get_bit(g_scalar, i + 140) << 2;
+      bits |= get_bit(g_scalar, i + 84) << 1;
+      bits |= get_bit(g_scalar, i + 28);
+      /* select the point to add, in constant time */
+      select_point(bits, 16, g_pre_comp[1], tmp);
+
+      if (!skip) {
+        point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */,
+                  tmp[0], tmp[1], tmp[2]);
+      } else {
+        memcpy(nq, tmp, 3 * sizeof(felem));
+        skip = 0;
+      }
+
+      /* second, look at the current position */
+      bits = get_bit(g_scalar, i + 168) << 3;
+      bits |= get_bit(g_scalar, i + 112) << 2;
+      bits |= get_bit(g_scalar, i + 56) << 1;
+      bits |= get_bit(g_scalar, i);
+      /* select the point to add, in constant time */
+      select_point(bits, 16, g_pre_comp[0], tmp);
+      point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], 1 /* mixed */, tmp[0],
+                tmp[1], tmp[2]);
+    }
+
+    /* do other additions every 5 doublings */
+    if (num_points && (i % 5 == 0)) {
+      /* loop over all scalars */
+      for (num = 0; num < num_points; ++num) {
+        bits = get_bit(scalars[num], i + 4) << 5;
+        bits |= get_bit(scalars[num], i + 3) << 4;
+        bits |= get_bit(scalars[num], i + 2) << 3;
+        bits |= get_bit(scalars[num], i + 1) << 2;
+        bits |= get_bit(scalars[num], i) << 1;
+        bits |= get_bit(scalars[num], i - 1);
+        ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits);
+
+        /* select the point to add or subtract */
+        select_point(digit, 17, pre_comp[num], tmp);
+        felem_neg(tmp[3], tmp[1]); /* (X, -Y, Z) is the negative point */
+        copy_conditional(tmp[1], tmp[3], sign);
+
+        if (!skip) {
+          point_add(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2], mixed, tmp[0],
+                    tmp[1], tmp[2]);
+        } else {
+          memcpy(nq, tmp, 3 * sizeof(felem));
+          skip = 0;
+        }
+      }
+    }
+  }
+  felem_assign(x_out, nq[0]);
+  felem_assign(y_out, nq[1]);
+  felem_assign(z_out, nq[2]);
+}
+
+int ec_GFp_nistp224_group_init(EC_GROUP *group) {
+  int ret;
+  ret = ec_GFp_simple_group_init(group);
+  group->a_is_minus3 = 1;
+  return ret;
+}
+
+int ec_GFp_nistp224_group_set_curve(EC_GROUP *group, const BIGNUM *p,
+                                    const BIGNUM *a, const BIGNUM *b,
+                                    BN_CTX *ctx) {
+  int ret = 0;
+  BN_CTX *new_ctx = NULL;
+  BIGNUM *curve_p, *curve_a, *curve_b;
+
+  if (ctx == NULL) {
+    ctx = BN_CTX_new();
+    new_ctx = ctx;
+    if (ctx == NULL) {
+      return 0;
+    }
+  }
+  BN_CTX_start(ctx);
+  if (((curve_p = BN_CTX_get(ctx)) == NULL) ||
+      ((curve_a = BN_CTX_get(ctx)) == NULL) ||
+      ((curve_b = BN_CTX_get(ctx)) == NULL)) {
+    goto err;
+  }
+  BN_bin2bn(nistp224_curve_params[0], sizeof(felem_bytearray), curve_p);
+  BN_bin2bn(nistp224_curve_params[1], sizeof(felem_bytearray), curve_a);
+  BN_bin2bn(nistp224_curve_params[2], sizeof(felem_bytearray), curve_b);
+  if (BN_cmp(curve_p, p) ||
+      BN_cmp(curve_a, a) ||
+      BN_cmp(curve_b, b)) {
+    OPENSSL_PUT_ERROR(EC, EC_R_WRONG_CURVE_PARAMETERS);
+    goto err;
+  }
+  ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx);
+
+err:
+  BN_CTX_end(ctx);
+  BN_CTX_free(new_ctx);
+  return ret;
+}
+
+/* Takes the Jacobian coordinates (X, Y, Z) of a point and returns
+ * (X', Y') = (X/Z^2, Y/Z^3) */
+int ec_GFp_nistp224_point_get_affine_coordinates(const EC_GROUP *group,
+                                                 const EC_POINT *point,
+                                                 BIGNUM *x, BIGNUM *y,
+                                                 BN_CTX *ctx) {
+  felem z1, z2, x_in, y_in, x_out, y_out;
+  widefelem tmp;
+
+  if (EC_POINT_is_at_infinity(group, point)) {
+    OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
+    return 0;
+  }
+
+  if (!BN_to_felem(x_in, &point->X) ||
+      !BN_to_felem(y_in, &point->Y) ||
+      !BN_to_felem(z1, &point->Z)) {
+    return 0;
+  }
+
+  felem_inv(z2, z1);
+  felem_square(tmp, z2);
+  felem_reduce(z1, tmp);
+  felem_mul(tmp, x_in, z1);
+  felem_reduce(x_in, tmp);
+  felem_contract(x_out, x_in);
+  if (x != NULL && !felem_to_BN(x, x_out)) {
+    OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
+    return 0;
+  }
+
+  felem_mul(tmp, z1, z2);
+  felem_reduce(z1, tmp);
+  felem_mul(tmp, y_in, z1);
+  felem_reduce(y_in, tmp);
+  felem_contract(y_out, y_in);
+  if (y != NULL && !felem_to_BN(y, y_out)) {
+    OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
+    return 0;
+  }
+
+  return 1;
+}
+
+static void make_points_affine(size_t num, felem points[/*num*/][3],
+                               felem tmp_felems[/*num+1*/]) {
+  /* Runs in constant time, unless an input is the point at infinity
+   * (which normally shouldn't happen). */
+  ec_GFp_nistp_points_make_affine_internal(
+      num, points, sizeof(felem), tmp_felems, (void (*)(void *))felem_one,
+      (int (*)(const void *))felem_is_zero_int,
+      (void (*)(void *, const void *))felem_assign,
+      (void (*)(void *, const void *))felem_square_reduce,
+      (void (*)(void *, const void *, const void *))felem_mul_reduce,
+      (void (*)(void *, const void *))felem_inv,
+      (void (*)(void *, const void *))felem_contract);
+}
+
+/* Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL values
+ * Result is stored in r (r can equal one of the inputs). */
+int ec_GFp_nistp224_points_mul(const EC_GROUP *group, EC_POINT *r,
+                               const BIGNUM *scalar, size_t num,
+                               const EC_POINT *points[],
+                               const BIGNUM *scalars[], BN_CTX *ctx) {
+  int ret = 0;
+  int j;
+  unsigned i;
+  int mixed = 0;
+  BN_CTX *new_ctx = NULL;
+  BIGNUM *x, *y, *z, *tmp_scalar;
+  felem_bytearray g_secret;
+  felem_bytearray *secrets = NULL;
+  felem(*pre_comp)[17][3] = NULL;
+  felem *tmp_felems = NULL;
+  felem_bytearray tmp;
+  unsigned num_bytes;
+  int have_pre_comp = 0;
+  size_t num_points = num;
+  felem x_in, y_in, z_in, x_out, y_out, z_out;
+  const felem(*g_pre_comp)[16][3] = NULL;
+  EC_POINT *generator = NULL;
+  const EC_POINT *p = NULL;
+  const BIGNUM *p_scalar = NULL;
+
+  if (ctx == NULL) {
+    ctx = BN_CTX_new();
+    new_ctx = ctx;
+    if (ctx == NULL) {
+      return 0;
+    }
+  }
+
+  BN_CTX_start(ctx);
+  if ((x = BN_CTX_get(ctx)) == NULL ||
+      (y = BN_CTX_get(ctx)) == NULL ||
+      (z = BN_CTX_get(ctx)) == NULL ||
+      (tmp_scalar = BN_CTX_get(ctx)) == NULL) {
+    goto err;
+  }
+
+  if (scalar != NULL) {
+    /* try to use the standard precomputation */
+    g_pre_comp = &gmul[0];
+    generator = EC_POINT_new(group);
+    if (generator == NULL) {
+      goto err;
+    }
+    /* get the generator from precomputation */
+    if (!felem_to_BN(x, g_pre_comp[0][1][0]) ||
+        !felem_to_BN(y, g_pre_comp[0][1][1]) ||
+        !felem_to_BN(z, g_pre_comp[0][1][2])) {
+      OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
+      goto err;
+    }
+    if (!ec_point_set_Jprojective_coordinates_GFp(group, generator, x, y, z,
+                                                  ctx)) {
+      goto err;
+    }
+
+    if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) {
+      /* precomputation matches generator */
+      have_pre_comp = 1;
+    } else {
+      /* we don't have valid precomputation:
+       * treat the generator as a random point */
+      num_points = num_points + 1;
+    }
+  }
+
+  if (num_points > 0) {
+    if (num_points >= 3) {
+      /* unless we precompute multiples for just one or two points,
+       * converting those into affine form is time well spent  */
+      mixed = 1;
+    }
+    secrets = OPENSSL_malloc(num_points * sizeof(felem_bytearray));
+    pre_comp = OPENSSL_malloc(num_points * 17 * 3 * sizeof(felem));
+    if (mixed) {
+      tmp_felems = OPENSSL_malloc((num_points * 17 + 1) * sizeof(felem));
+    }
+    if (secrets == NULL ||
+        pre_comp == NULL ||
+        (mixed && tmp_felems == NULL)) {
+      OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
+      goto err;
+    }
+
+    /* we treat NULL scalars as 0, and NULL points as points at infinity,
+     * i.e., they contribute nothing to the linear combination */
+    memset(secrets, 0, num_points * sizeof(felem_bytearray));
+    memset(pre_comp, 0, num_points * 17 * 3 * sizeof(felem));
+    for (i = 0; i < num_points; ++i) {
+      if (i == num) {
+        /* the generator */
+        p = EC_GROUP_get0_generator(group);
+        p_scalar = scalar;
+      } else {
+        /* the i^th point */
+        p = points[i];
+        p_scalar = scalars[i];
+      }
+
+      if (p_scalar != NULL && p != NULL) {
+        /* reduce scalar to 0 <= scalar < 2^224 */
+        if (BN_num_bits(p_scalar) > 224 || BN_is_negative(p_scalar)) {
+          /* this is an unusual input, and we don't guarantee
+           * constant-timeness */
+          if (!BN_nnmod(tmp_scalar, p_scalar, &group->order, ctx)) {
+            OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
+            goto err;
+          }
+          num_bytes = BN_bn2bin(tmp_scalar, tmp);
+        } else {
+          num_bytes = BN_bn2bin(p_scalar, tmp);
+        }
+
+        flip_endian(secrets[i], tmp, num_bytes);
+        /* precompute multiples */
+        if (!BN_to_felem(x_out, &p->X) ||
+            !BN_to_felem(y_out, &p->Y) ||
+            !BN_to_felem(z_out, &p->Z)) {
+          goto err;
+        }
+
+        felem_assign(pre_comp[i][1][0], x_out);
+        felem_assign(pre_comp[i][1][1], y_out);
+        felem_assign(pre_comp[i][1][2], z_out);
+
+        for (j = 2; j <= 16; ++j) {
+          if (j & 1) {
+            point_add(pre_comp[i][j][0], pre_comp[i][j][1], pre_comp[i][j][2],
+                      pre_comp[i][1][0], pre_comp[i][1][1], pre_comp[i][1][2],
+                      0, pre_comp[i][j - 1][0], pre_comp[i][j - 1][1],
+                      pre_comp[i][j - 1][2]);
+          } else {
+            point_double(pre_comp[i][j][0], pre_comp[i][j][1],
+                         pre_comp[i][j][2], pre_comp[i][j / 2][0],
+                         pre_comp[i][j / 2][1], pre_comp[i][j / 2][2]);
+          }
+        }
+      }
+    }
+
+    if (mixed) {
+      make_points_affine(num_points * 17, pre_comp[0], tmp_felems);
+    }
+  }
+
+  /* the scalar for the generator */
+  if (scalar != NULL && have_pre_comp) {
+    memset(g_secret, 0, sizeof(g_secret));
+    /* reduce scalar to 0 <= scalar < 2^224 */
+    if (BN_num_bits(scalar) > 224 || BN_is_negative(scalar)) {
+      /* this is an unusual input, and we don't guarantee constant-timeness */
+      if (!BN_nnmod(tmp_scalar, scalar, &group->order, ctx)) {
+        OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
+        goto err;
+      }
+      num_bytes = BN_bn2bin(tmp_scalar, tmp);
+    } else {
+      num_bytes = BN_bn2bin(scalar, tmp);
+    }
+
+    flip_endian(g_secret, tmp, num_bytes);
+    /* do the multiplication with generator precomputation */
+    batch_mul(x_out, y_out, z_out, (const felem_bytearray(*))secrets,
+              num_points, g_secret, mixed, (const felem(*)[17][3])pre_comp,
+              g_pre_comp);
+  } else {
+    /* do the multiplication without generator precomputation */
+    batch_mul(x_out, y_out, z_out, (const felem_bytearray(*))secrets,
+              num_points, NULL, mixed, (const felem(*)[17][3])pre_comp, NULL);
+  }
+
+  /* reduce the output to its unique minimal representation */
+  felem_contract(x_in, x_out);
+  felem_contract(y_in, y_out);
+  felem_contract(z_in, z_out);
+  if (!felem_to_BN(x, x_in) ||
+      !felem_to_BN(y, y_in) ||
+      !felem_to_BN(z, z_in)) {
+    OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
+    goto err;
+  }
+  ret = ec_point_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx);
+
+err:
+  BN_CTX_end(ctx);
+  EC_POINT_free(generator);
+  BN_CTX_free(new_ctx);
+  OPENSSL_free(secrets);
+  OPENSSL_free(pre_comp);
+  OPENSSL_free(tmp_felems);
+  return ret;
+}
+
+const EC_METHOD *EC_GFp_nistp224_method(void) {
+  static const EC_METHOD ret = {EC_FLAGS_DEFAULT_OCT,
+                                ec_GFp_nistp224_group_init,
+                                ec_GFp_simple_group_finish,
+                                ec_GFp_simple_group_clear_finish,
+                                ec_GFp_simple_group_copy,
+                                ec_GFp_nistp224_group_set_curve,
+                                ec_GFp_simple_group_get_curve,
+                                ec_GFp_simple_group_get_degree,
+                                ec_GFp_simple_group_check_discriminant,
+                                ec_GFp_simple_point_init,
+                                ec_GFp_simple_point_finish,
+                                ec_GFp_simple_point_clear_finish,
+                                ec_GFp_simple_point_copy,
+                                ec_GFp_simple_point_set_to_infinity,
+                                ec_GFp_simple_set_Jprojective_coordinates_GFp,
+                                ec_GFp_simple_get_Jprojective_coordinates_GFp,
+                                ec_GFp_simple_point_set_affine_coordinates,
+                                ec_GFp_nistp224_point_get_affine_coordinates,
+                                0 /* point_set_compressed_coordinates */,
+                                0 /* point2oct */,
+                                0 /* oct2point */,
+                                ec_GFp_simple_add,
+                                ec_GFp_simple_dbl,
+                                ec_GFp_simple_invert,
+                                ec_GFp_simple_is_at_infinity,
+                                ec_GFp_simple_is_on_curve,
+                                ec_GFp_simple_cmp,
+                                ec_GFp_simple_make_affine,
+                                ec_GFp_simple_points_make_affine,
+                                ec_GFp_nistp224_points_mul,
+                                0 /* precompute_mult */,
+                                0 /* have_precompute_mult */,
+                                ec_GFp_simple_field_mul,
+                                ec_GFp_simple_field_sqr,
+                                0 /* field_div */,
+                                0 /* field_encode */,
+                                0 /* field_decode */,
+                                0 /* field_set_to_one */};
+
+  return &ret;
+}
+
+#endif