blob: 9c54a4df9f6536e1234a87063f38b75b8928c3f5 [file] [log] [blame]
/* Copyright (c) 2016, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <openssl/ssl.h>
#include <assert.h>
#include <string.h>
#include <algorithm>
#include <utility>
#include <openssl/aead.h>
#include <openssl/bytestring.h>
#include <openssl/digest.h>
#include <openssl/hkdf.h>
#include <openssl/hmac.h>
#include <openssl/mem.h>
#include "../crypto/internal.h"
#include "internal.h"
BSSL_NAMESPACE_BEGIN
static bool init_key_schedule(SSL_HANDSHAKE *hs, SSLTranscript *transcript,
uint16_t version, const SSL_CIPHER *cipher) {
if (!transcript->InitHash(version, cipher)) {
return false;
}
// Initialize the secret to the zero key.
hs->ResizeSecrets(transcript->DigestLen());
OPENSSL_memset(hs->secret().data(), 0, hs->secret().size());
return true;
}
static bool hkdf_extract_to_secret(SSL_HANDSHAKE *hs,
const SSLTranscript &transcript,
Span<const uint8_t> in) {
size_t len;
if (!HKDF_extract(hs->secret().data(), &len, transcript.Digest(), in.data(),
in.size(), hs->secret().data(), hs->secret().size())) {
return false;
}
assert(len == hs->secret().size());
return true;
}
bool tls13_init_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> psk) {
if (!init_key_schedule(hs, &hs->transcript, ssl_protocol_version(hs->ssl),
hs->new_cipher)) {
return false;
}
// Handback includes the whole handshake transcript, so we cannot free the
// transcript buffer in the handback case.
if (!hs->handback) {
hs->transcript.FreeBuffer();
}
return hkdf_extract_to_secret(hs, hs->transcript, psk);
}
bool tls13_init_early_key_schedule(SSL_HANDSHAKE *hs,
const SSL_SESSION *session) {
assert(!hs->ssl->server);
// When offering ECH, early data is associated with ClientHelloInner, not
// ClientHelloOuter.
SSLTranscript *transcript =
hs->selected_ech_config ? &hs->inner_transcript : &hs->transcript;
return init_key_schedule(hs, transcript,
ssl_session_protocol_version(session),
session->cipher) &&
hkdf_extract_to_secret(
hs, *transcript,
MakeConstSpan(session->secret, session->secret_length));
}
static Span<const char> label_to_span(const char *label) {
return MakeConstSpan(label, strlen(label));
}
static bool hkdf_expand_label(Span<uint8_t> out, const EVP_MD *digest,
Span<const uint8_t> secret,
Span<const char> label,
Span<const uint8_t> hash) {
Span<const char> protocol_label = label_to_span("tls13 ");
ScopedCBB cbb;
CBB child;
Array<uint8_t> hkdf_label;
if (!CBB_init(cbb.get(), 2 + 1 + protocol_label.size() + label.size() + 1 +
hash.size()) ||
!CBB_add_u16(cbb.get(), out.size()) ||
!CBB_add_u8_length_prefixed(cbb.get(), &child) ||
!CBB_add_bytes(&child,
reinterpret_cast<const uint8_t *>(protocol_label.data()),
protocol_label.size()) ||
!CBB_add_bytes(&child, reinterpret_cast<const uint8_t *>(label.data()),
label.size()) ||
!CBB_add_u8_length_prefixed(cbb.get(), &child) ||
!CBB_add_bytes(&child, hash.data(), hash.size()) ||
!CBBFinishArray(cbb.get(), &hkdf_label)) {
return false;
}
return HKDF_expand(out.data(), out.size(), digest, secret.data(),
secret.size(), hkdf_label.data(), hkdf_label.size());
}
static const char kTLS13LabelDerived[] = "derived";
bool tls13_advance_key_schedule(SSL_HANDSHAKE *hs, Span<const uint8_t> in) {
uint8_t derive_context[EVP_MAX_MD_SIZE];
unsigned derive_context_len;
return EVP_Digest(nullptr, 0, derive_context, &derive_context_len,
hs->transcript.Digest(), nullptr) &&
hkdf_expand_label(hs->secret(), hs->transcript.Digest(), hs->secret(),
label_to_span(kTLS13LabelDerived),
MakeConstSpan(derive_context, derive_context_len)) &&
hkdf_extract_to_secret(hs, hs->transcript, in);
}
// derive_secret_with_transcript derives a secret of length |out.size()| and
// writes the result in |out| with the given label, the current base secret, and
// the state of |transcript|. It returns true on success and false on error.
static bool derive_secret_with_transcript(const SSL_HANDSHAKE *hs,
Span<uint8_t> out,
const SSLTranscript &transcript,
Span<const char> label) {
uint8_t context_hash[EVP_MAX_MD_SIZE];
size_t context_hash_len;
if (!transcript.GetHash(context_hash, &context_hash_len)) {
return false;
}
return hkdf_expand_label(out, transcript.Digest(), hs->secret(), label,
MakeConstSpan(context_hash, context_hash_len));
}
static bool derive_secret(SSL_HANDSHAKE *hs, Span<uint8_t> out,
Span<const char> label) {
return derive_secret_with_transcript(hs, out, hs->transcript, label);
}
bool tls13_set_traffic_key(SSL *ssl, enum ssl_encryption_level_t level,
enum evp_aead_direction_t direction,
const SSL_SESSION *session,
Span<const uint8_t> traffic_secret) {
uint16_t version = ssl_session_protocol_version(session);
UniquePtr<SSLAEADContext> traffic_aead;
Span<const uint8_t> secret_for_quic;
if (ssl->quic_method != nullptr) {
// Install a placeholder SSLAEADContext so that SSL accessors work. The
// encryption itself will be handled by the SSL_QUIC_METHOD.
traffic_aead =
SSLAEADContext::CreatePlaceholderForQUIC(version, session->cipher);
secret_for_quic = traffic_secret;
} else {
// Look up cipher suite properties.
const EVP_AEAD *aead;
size_t discard;
if (!ssl_cipher_get_evp_aead(&aead, &discard, &discard, session->cipher,
version, SSL_is_dtls(ssl))) {
return false;
}
const EVP_MD *digest = ssl_session_get_digest(session);
// Derive the key.
size_t key_len = EVP_AEAD_key_length(aead);
uint8_t key_buf[EVP_AEAD_MAX_KEY_LENGTH];
auto key = MakeSpan(key_buf, key_len);
if (!hkdf_expand_label(key, digest, traffic_secret, label_to_span("key"),
{})) {
return false;
}
// Derive the IV.
size_t iv_len = EVP_AEAD_nonce_length(aead);
uint8_t iv_buf[EVP_AEAD_MAX_NONCE_LENGTH];
auto iv = MakeSpan(iv_buf, iv_len);
if (!hkdf_expand_label(iv, digest, traffic_secret, label_to_span("iv"),
{})) {
return false;
}
traffic_aead = SSLAEADContext::Create(direction, session->ssl_version,
SSL_is_dtls(ssl), session->cipher,
key, Span<const uint8_t>(), iv);
}
if (!traffic_aead) {
return false;
}
if (traffic_secret.size() >
OPENSSL_ARRAY_SIZE(ssl->s3->read_traffic_secret) ||
traffic_secret.size() >
OPENSSL_ARRAY_SIZE(ssl->s3->write_traffic_secret)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return false;
}
if (direction == evp_aead_open) {
if (!ssl->method->set_read_state(ssl, level, std::move(traffic_aead),
secret_for_quic)) {
return false;
}
OPENSSL_memmove(ssl->s3->read_traffic_secret, traffic_secret.data(),
traffic_secret.size());
ssl->s3->read_traffic_secret_len = traffic_secret.size();
} else {
if (!ssl->method->set_write_state(ssl, level, std::move(traffic_aead),
secret_for_quic)) {
return false;
}
OPENSSL_memmove(ssl->s3->write_traffic_secret, traffic_secret.data(),
traffic_secret.size());
ssl->s3->write_traffic_secret_len = traffic_secret.size();
}
return true;
}
static const char kTLS13LabelExporter[] = "exp master";
static const char kTLS13LabelClientEarlyTraffic[] = "c e traffic";
static const char kTLS13LabelClientHandshakeTraffic[] = "c hs traffic";
static const char kTLS13LabelServerHandshakeTraffic[] = "s hs traffic";
static const char kTLS13LabelClientApplicationTraffic[] = "c ap traffic";
static const char kTLS13LabelServerApplicationTraffic[] = "s ap traffic";
bool tls13_derive_early_secret(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
// When offering ECH on the client, early data is associated with
// ClientHelloInner, not ClientHelloOuter.
const SSLTranscript &transcript = (!ssl->server && hs->selected_ech_config)
? hs->inner_transcript
: hs->transcript;
if (!derive_secret_with_transcript(
hs, hs->early_traffic_secret(), transcript,
label_to_span(kTLS13LabelClientEarlyTraffic)) ||
!ssl_log_secret(ssl, "CLIENT_EARLY_TRAFFIC_SECRET",
hs->early_traffic_secret())) {
return false;
}
return true;
}
bool tls13_derive_handshake_secrets(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
if (!derive_secret(hs, hs->client_handshake_secret(),
label_to_span(kTLS13LabelClientHandshakeTraffic)) ||
!ssl_log_secret(ssl, "CLIENT_HANDSHAKE_TRAFFIC_SECRET",
hs->client_handshake_secret()) ||
!derive_secret(hs, hs->server_handshake_secret(),
label_to_span(kTLS13LabelServerHandshakeTraffic)) ||
!ssl_log_secret(ssl, "SERVER_HANDSHAKE_TRAFFIC_SECRET",
hs->server_handshake_secret())) {
return false;
}
return true;
}
bool tls13_derive_application_secrets(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
ssl->s3->exporter_secret_len = hs->transcript.DigestLen();
if (!derive_secret(hs, hs->client_traffic_secret_0(),
label_to_span(kTLS13LabelClientApplicationTraffic)) ||
!ssl_log_secret(ssl, "CLIENT_TRAFFIC_SECRET_0",
hs->client_traffic_secret_0()) ||
!derive_secret(hs, hs->server_traffic_secret_0(),
label_to_span(kTLS13LabelServerApplicationTraffic)) ||
!ssl_log_secret(ssl, "SERVER_TRAFFIC_SECRET_0",
hs->server_traffic_secret_0()) ||
!derive_secret(
hs, MakeSpan(ssl->s3->exporter_secret, ssl->s3->exporter_secret_len),
label_to_span(kTLS13LabelExporter)) ||
!ssl_log_secret(ssl, "EXPORTER_SECRET",
MakeConstSpan(ssl->s3->exporter_secret,
ssl->s3->exporter_secret_len))) {
return false;
}
return true;
}
static const char kTLS13LabelApplicationTraffic[] = "traffic upd";
bool tls13_rotate_traffic_key(SSL *ssl, enum evp_aead_direction_t direction) {
Span<uint8_t> secret;
if (direction == evp_aead_open) {
secret = MakeSpan(ssl->s3->read_traffic_secret,
ssl->s3->read_traffic_secret_len);
} else {
secret = MakeSpan(ssl->s3->write_traffic_secret,
ssl->s3->write_traffic_secret_len);
}
const SSL_SESSION *session = SSL_get_session(ssl);
const EVP_MD *digest = ssl_session_get_digest(session);
return hkdf_expand_label(secret, digest, secret,
label_to_span(kTLS13LabelApplicationTraffic), {}) &&
tls13_set_traffic_key(ssl, ssl_encryption_application, direction,
session, secret);
}
static const char kTLS13LabelResumption[] = "res master";
bool tls13_derive_resumption_secret(SSL_HANDSHAKE *hs) {
if (hs->transcript.DigestLen() > SSL_MAX_MASTER_KEY_LENGTH) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return false;
}
hs->new_session->secret_length = hs->transcript.DigestLen();
return derive_secret(
hs, MakeSpan(hs->new_session->secret, hs->new_session->secret_length),
label_to_span(kTLS13LabelResumption));
}
static const char kTLS13LabelFinished[] = "finished";
// tls13_verify_data sets |out| to be the HMAC of |context| using a derived
// Finished key for both Finished messages and the PSK binder. |out| must have
// space available for |EVP_MAX_MD_SIZE| bytes.
static bool tls13_verify_data(uint8_t *out, size_t *out_len,
const EVP_MD *digest, uint16_t version,
Span<const uint8_t> secret,
Span<const uint8_t> context) {
uint8_t key_buf[EVP_MAX_MD_SIZE];
auto key = MakeSpan(key_buf, EVP_MD_size(digest));
unsigned len;
if (!hkdf_expand_label(key, digest, secret,
label_to_span(kTLS13LabelFinished), {}) ||
HMAC(digest, key.data(), key.size(), context.data(), context.size(), out,
&len) == nullptr) {
return false;
}
*out_len = len;
return true;
}
bool tls13_finished_mac(SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len,
bool is_server) {
Span<const uint8_t> traffic_secret =
is_server ? hs->server_handshake_secret() : hs->client_handshake_secret();
uint8_t context_hash[EVP_MAX_MD_SIZE];
size_t context_hash_len;
if (!hs->transcript.GetHash(context_hash, &context_hash_len) ||
!tls13_verify_data(out, out_len, hs->transcript.Digest(),
hs->ssl->version, traffic_secret,
MakeConstSpan(context_hash, context_hash_len))) {
return 0;
}
return 1;
}
static const char kTLS13LabelResumptionPSK[] = "resumption";
bool tls13_derive_session_psk(SSL_SESSION *session, Span<const uint8_t> nonce) {
const EVP_MD *digest = ssl_session_get_digest(session);
// The session initially stores the resumption_master_secret, which we
// override with the PSK.
auto session_secret = MakeSpan(session->secret, session->secret_length);
return hkdf_expand_label(session_secret, digest, session_secret,
label_to_span(kTLS13LabelResumptionPSK), nonce);
}
static const char kTLS13LabelExportKeying[] = "exporter";
bool tls13_export_keying_material(SSL *ssl, Span<uint8_t> out,
Span<const uint8_t> secret,
Span<const char> label,
Span<const uint8_t> context) {
if (secret.empty()) {
assert(0);
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return false;
}
const EVP_MD *digest = ssl_session_get_digest(SSL_get_session(ssl));
uint8_t hash_buf[EVP_MAX_MD_SIZE];
uint8_t export_context_buf[EVP_MAX_MD_SIZE];
unsigned hash_len;
unsigned export_context_len;
if (!EVP_Digest(context.data(), context.size(), hash_buf, &hash_len, digest,
nullptr) ||
!EVP_Digest(nullptr, 0, export_context_buf, &export_context_len, digest,
nullptr)) {
return false;
}
auto hash = MakeConstSpan(hash_buf, hash_len);
auto export_context = MakeConstSpan(export_context_buf, export_context_len);
uint8_t derived_secret_buf[EVP_MAX_MD_SIZE];
auto derived_secret = MakeSpan(derived_secret_buf, EVP_MD_size(digest));
return hkdf_expand_label(derived_secret, digest, secret, label,
export_context) &&
hkdf_expand_label(out, digest, derived_secret,
label_to_span(kTLS13LabelExportKeying), hash);
}
static const char kTLS13LabelPSKBinder[] = "res binder";
static bool tls13_psk_binder(uint8_t *out, size_t *out_len,
const SSL_SESSION *session,
const SSLTranscript &transcript,
Span<const uint8_t> client_hello,
size_t binders_len) {
const EVP_MD *digest = ssl_session_get_digest(session);
// Compute the binder key.
//
// TODO(davidben): Ideally we wouldn't recompute early secret and the binder
// key each time.
uint8_t binder_context[EVP_MAX_MD_SIZE];
unsigned binder_context_len;
uint8_t early_secret[EVP_MAX_MD_SIZE] = {0};
size_t early_secret_len;
uint8_t binder_key_buf[EVP_MAX_MD_SIZE] = {0};
auto binder_key = MakeSpan(binder_key_buf, EVP_MD_size(digest));
if (!EVP_Digest(nullptr, 0, binder_context, &binder_context_len, digest,
nullptr) ||
!HKDF_extract(early_secret, &early_secret_len, digest, session->secret,
session->secret_length, nullptr, 0) ||
!hkdf_expand_label(binder_key, digest,
MakeConstSpan(early_secret, early_secret_len),
label_to_span(kTLS13LabelPSKBinder),
MakeConstSpan(binder_context, binder_context_len))) {
return false;
}
// Hash the transcript and truncated ClientHello.
if (client_hello.size() < binders_len) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return false;
}
auto truncated = client_hello.subspan(0, client_hello.size() - binders_len);
uint8_t context[EVP_MAX_MD_SIZE];
unsigned context_len;
ScopedEVP_MD_CTX ctx;
if (!transcript.CopyToHashContext(ctx.get(), digest) ||
!EVP_DigestUpdate(ctx.get(), truncated.data(),
truncated.size()) ||
!EVP_DigestFinal_ex(ctx.get(), context, &context_len)) {
return false;
}
if (!tls13_verify_data(out, out_len, digest, session->ssl_version, binder_key,
MakeConstSpan(context, context_len))) {
return false;
}
assert(*out_len == EVP_MD_size(digest));
return true;
}
bool tls13_write_psk_binder(const SSL_HANDSHAKE *hs,
const SSLTranscript &transcript, Span<uint8_t> msg,
size_t *out_binder_len) {
const SSL *const ssl = hs->ssl;
const EVP_MD *digest = ssl_session_get_digest(ssl->session.get());
const size_t hash_len = EVP_MD_size(digest);
// We only offer one PSK, so the binders are a u16 and u8 length
// prefix, followed by the binder. The caller is assumed to have constructed
// |msg| with placeholder binders.
const size_t binders_len = 3 + hash_len;
uint8_t verify_data[EVP_MAX_MD_SIZE];
size_t verify_data_len;
if (!tls13_psk_binder(verify_data, &verify_data_len, ssl->session.get(),
transcript, msg, binders_len) ||
verify_data_len != hash_len) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return false;
}
auto msg_binder = msg.last(verify_data_len);
OPENSSL_memcpy(msg_binder.data(), verify_data, verify_data_len);
if (out_binder_len != nullptr) {
*out_binder_len = verify_data_len;
}
return true;
}
bool tls13_verify_psk_binder(const SSL_HANDSHAKE *hs,
const SSL_SESSION *session, const SSLMessage &msg,
CBS *binders) {
uint8_t verify_data[EVP_MAX_MD_SIZE];
size_t verify_data_len;
CBS binder;
// The binders are computed over |msg| with |binders| and its u16 length
// prefix removed. The caller is assumed to have parsed |msg|, extracted
// |binders|, and verified the PSK extension is last.
if (!tls13_psk_binder(verify_data, &verify_data_len, session, hs->transcript,
msg.raw, 2 + CBS_len(binders)) ||
// We only consider the first PSK, so compare against the first binder.
!CBS_get_u8_length_prefixed(binders, &binder)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return false;
}
bool binder_ok =
CBS_len(&binder) == verify_data_len &&
CRYPTO_memcmp(CBS_data(&binder), verify_data, verify_data_len) == 0;
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
binder_ok = true;
#endif
if (!binder_ok) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DIGEST_CHECK_FAILED);
return false;
}
return true;
}
size_t ssl_ech_confirmation_signal_hello_offset(const SSL *ssl) {
static_assert(ECH_CONFIRMATION_SIGNAL_LEN < SSL3_RANDOM_SIZE,
"the confirmation signal is a suffix of the random");
const size_t header_len =
SSL_is_dtls(ssl) ? DTLS1_HM_HEADER_LENGTH : SSL3_HM_HEADER_LENGTH;
return header_len + 2 /* version */ + SSL3_RANDOM_SIZE -
ECH_CONFIRMATION_SIGNAL_LEN;
}
bool ssl_ech_accept_confirmation(
const SSL_HANDSHAKE *hs, bssl::Span<uint8_t> out,
const SSLTranscript &transcript,
bssl::Span<const uint8_t> server_hello) {
// We hash |server_hello|, with the last |ECH_CONFIRMATION_SIGNAL_LEN| bytes
// of the random value zeroed.
static const uint8_t kZeroes[ECH_CONFIRMATION_SIGNAL_LEN] = {0};
const size_t offset = ssl_ech_confirmation_signal_hello_offset(hs->ssl);
if (server_hello.size() < offset + ECH_CONFIRMATION_SIGNAL_LEN) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return false;
}
auto before_zeroes = server_hello.subspan(0, offset);
auto after_zeroes =
server_hello.subspan(offset + ECH_CONFIRMATION_SIGNAL_LEN);
uint8_t context_hash[EVP_MAX_MD_SIZE];
unsigned context_hash_len;
ScopedEVP_MD_CTX ctx;
if (!transcript.CopyToHashContext(ctx.get(), transcript.Digest()) ||
!EVP_DigestUpdate(ctx.get(), before_zeroes.data(),
before_zeroes.size()) ||
!EVP_DigestUpdate(ctx.get(), kZeroes, sizeof(kZeroes)) ||
!EVP_DigestUpdate(ctx.get(), after_zeroes.data(), after_zeroes.size()) ||
!EVP_DigestFinal_ex(ctx.get(), context_hash, &context_hash_len)) {
return false;
}
// Per draft-ietf-tls-esni-10, accept_confirmation is computed with
// Derive-Secret, which derives a secret of size Hash.length. That value is
// then truncated to the first 8 bytes. Note this differs from deriving an
// 8-byte secret because the target length is included in the derivation.
//
// TODO(https://crbug.com/boringssl/275): draft-11 will avoid this.
uint8_t accept_confirmation_buf[EVP_MAX_MD_SIZE];
bssl::Span<uint8_t> accept_confirmation =
MakeSpan(accept_confirmation_buf, transcript.DigestLen());
if (!hkdf_expand_label(accept_confirmation, transcript.Digest(),
hs->secret(), label_to_span("ech accept confirmation"),
MakeConstSpan(context_hash, context_hash_len))) {
return false;
}
static_assert(ECH_CONFIRMATION_SIGNAL_LEN < EVP_MAX_MD_SIZE,
"ECH confirmation signal too big");
if (out.size() != ECH_CONFIRMATION_SIGNAL_LEN) {
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return false;
}
OPENSSL_memcpy(out.data(), accept_confirmation.data(), out.size());
return true;
}
BSSL_NAMESPACE_END