| /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL |
| * project 1999. |
| */ |
| /* ==================================================================== |
| * Copyright (c) 1999 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * licensing@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). */ |
| |
| #include <openssl/pkcs8.h> |
| |
| #include <limits.h> |
| |
| #include <openssl/asn1t.h> |
| #include <openssl/asn1.h> |
| #include <openssl/bio.h> |
| #include <openssl/buf.h> |
| #include <openssl/bytestring.h> |
| #include <openssl/err.h> |
| #include <openssl/evp.h> |
| #include <openssl/digest.h> |
| #include <openssl/hmac.h> |
| #include <openssl/mem.h> |
| #include <openssl/rand.h> |
| #include <openssl/x509.h> |
| |
| #include "internal.h" |
| #include "../bytestring/internal.h" |
| #include "../internal.h" |
| |
| |
| int pkcs12_iterations_acceptable(uint64_t iterations) { |
| #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) |
| static const uint64_t kIterationsLimit = 2048; |
| #else |
| // Windows imposes a limit of 600K. Mozilla say: “so them increasing |
| // maximum to something like 100M or 1G (to have few decades of breathing |
| // room) would be very welcome”[1]. So here we set the limit to 100M. |
| // |
| // [1] https://bugzilla.mozilla.org/show_bug.cgi?id=1436873#c14 |
| static const uint64_t kIterationsLimit = 100 * 1000000; |
| #endif |
| |
| return 0 < iterations && iterations <= kIterationsLimit; |
| } |
| |
| // Minor tweak to operation: zero private key data |
| static int pkey_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it, |
| void *exarg) { |
| // Since the structure must still be valid use ASN1_OP_FREE_PRE |
| if (operation == ASN1_OP_FREE_PRE) { |
| PKCS8_PRIV_KEY_INFO *key = (PKCS8_PRIV_KEY_INFO *)*pval; |
| if (key->pkey) { |
| OPENSSL_cleanse(key->pkey->data, key->pkey->length); |
| } |
| } |
| return 1; |
| } |
| |
| ASN1_SEQUENCE_cb(PKCS8_PRIV_KEY_INFO, pkey_cb) = { |
| ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, version, ASN1_INTEGER), |
| ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkeyalg, X509_ALGOR), |
| ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkey, ASN1_OCTET_STRING), |
| ASN1_IMP_SET_OF_OPT(PKCS8_PRIV_KEY_INFO, attributes, X509_ATTRIBUTE, 0) |
| } ASN1_SEQUENCE_END_cb(PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO) |
| |
| IMPLEMENT_ASN1_FUNCTIONS(PKCS8_PRIV_KEY_INFO) |
| |
| int PKCS8_pkey_set0(PKCS8_PRIV_KEY_INFO *priv, ASN1_OBJECT *aobj, int version, |
| int ptype, void *pval, uint8_t *penc, int penclen) { |
| if (version >= 0 && |
| !ASN1_INTEGER_set(priv->version, version)) { |
| return 0; |
| } |
| |
| if (!X509_ALGOR_set0(priv->pkeyalg, aobj, ptype, pval)) { |
| return 0; |
| } |
| |
| if (penc != NULL) { |
| ASN1_STRING_set0(priv->pkey, penc, penclen); |
| } |
| |
| return 1; |
| } |
| |
| int PKCS8_pkey_get0(ASN1_OBJECT **ppkalg, const uint8_t **pk, int *ppklen, |
| X509_ALGOR **pa, PKCS8_PRIV_KEY_INFO *p8) { |
| if (ppkalg) { |
| *ppkalg = p8->pkeyalg->algorithm; |
| } |
| if (pk) { |
| *pk = ASN1_STRING_data(p8->pkey); |
| *ppklen = ASN1_STRING_length(p8->pkey); |
| } |
| if (pa) { |
| *pa = p8->pkeyalg; |
| } |
| return 1; |
| } |
| |
| EVP_PKEY *EVP_PKCS82PKEY(PKCS8_PRIV_KEY_INFO *p8) { |
| uint8_t *der = NULL; |
| int der_len = i2d_PKCS8_PRIV_KEY_INFO(p8, &der); |
| if (der_len < 0) { |
| return NULL; |
| } |
| |
| CBS cbs; |
| CBS_init(&cbs, der, (size_t)der_len); |
| EVP_PKEY *ret = EVP_parse_private_key(&cbs); |
| if (ret == NULL || CBS_len(&cbs) != 0) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
| EVP_PKEY_free(ret); |
| OPENSSL_free(der); |
| return NULL; |
| } |
| |
| OPENSSL_free(der); |
| return ret; |
| } |
| |
| PKCS8_PRIV_KEY_INFO *EVP_PKEY2PKCS8(EVP_PKEY *pkey) { |
| CBB cbb; |
| uint8_t *der = NULL; |
| size_t der_len; |
| if (!CBB_init(&cbb, 0) || |
| !EVP_marshal_private_key(&cbb, pkey) || |
| !CBB_finish(&cbb, &der, &der_len) || |
| der_len > LONG_MAX) { |
| CBB_cleanup(&cbb); |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_ENCODE_ERROR); |
| goto err; |
| } |
| |
| const uint8_t *p = der; |
| PKCS8_PRIV_KEY_INFO *p8 = d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, (long)der_len); |
| if (p8 == NULL || p != der + der_len) { |
| PKCS8_PRIV_KEY_INFO_free(p8); |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR); |
| goto err; |
| } |
| |
| OPENSSL_free(der); |
| return p8; |
| |
| err: |
| OPENSSL_free(der); |
| return NULL; |
| } |
| |
| PKCS8_PRIV_KEY_INFO *PKCS8_decrypt(X509_SIG *pkcs8, const char *pass, |
| int pass_len_in) { |
| size_t pass_len; |
| if (pass_len_in == -1 && pass != NULL) { |
| pass_len = strlen(pass); |
| } else { |
| pass_len = (size_t)pass_len_in; |
| } |
| |
| PKCS8_PRIV_KEY_INFO *ret = NULL; |
| EVP_PKEY *pkey = NULL; |
| uint8_t *in = NULL; |
| |
| // Convert the legacy ASN.1 object to a byte string. |
| int in_len = i2d_X509_SIG(pkcs8, &in); |
| if (in_len < 0) { |
| goto err; |
| } |
| |
| CBS cbs; |
| CBS_init(&cbs, in, in_len); |
| pkey = PKCS8_parse_encrypted_private_key(&cbs, pass, pass_len); |
| if (pkey == NULL || CBS_len(&cbs) != 0) { |
| goto err; |
| } |
| |
| ret = EVP_PKEY2PKCS8(pkey); |
| |
| err: |
| OPENSSL_free(in); |
| EVP_PKEY_free(pkey); |
| return ret; |
| } |
| |
| X509_SIG *PKCS8_encrypt(int pbe_nid, const EVP_CIPHER *cipher, const char *pass, |
| int pass_len_in, const uint8_t *salt, size_t salt_len, |
| int iterations, PKCS8_PRIV_KEY_INFO *p8inf) { |
| size_t pass_len; |
| if (pass_len_in == -1 && pass != NULL) { |
| pass_len = strlen(pass); |
| } else { |
| pass_len = (size_t)pass_len_in; |
| } |
| |
| // Parse out the private key. |
| EVP_PKEY *pkey = EVP_PKCS82PKEY(p8inf); |
| if (pkey == NULL) { |
| return NULL; |
| } |
| |
| X509_SIG *ret = NULL; |
| uint8_t *der = NULL; |
| size_t der_len; |
| CBB cbb; |
| if (!CBB_init(&cbb, 128) || |
| !PKCS8_marshal_encrypted_private_key(&cbb, pbe_nid, cipher, pass, |
| pass_len, salt, salt_len, iterations, |
| pkey) || |
| !CBB_finish(&cbb, &der, &der_len)) { |
| CBB_cleanup(&cbb); |
| goto err; |
| } |
| |
| // Convert back to legacy ASN.1 objects. |
| const uint8_t *ptr = der; |
| ret = d2i_X509_SIG(NULL, &ptr, der_len); |
| if (ret == NULL || ptr != der + der_len) { |
| OPENSSL_PUT_ERROR(PKCS8, ERR_R_INTERNAL_ERROR); |
| X509_SIG_free(ret); |
| ret = NULL; |
| } |
| |
| err: |
| OPENSSL_free(der); |
| EVP_PKEY_free(pkey); |
| return ret; |
| } |
| |
| struct pkcs12_context { |
| EVP_PKEY **out_key; |
| STACK_OF(X509) *out_certs; |
| const char *password; |
| size_t password_len; |
| }; |
| |
| // PKCS12_handle_sequence parses a BER-encoded SEQUENCE of elements in a PKCS#12 |
| // structure. |
| static int PKCS12_handle_sequence( |
| CBS *sequence, struct pkcs12_context *ctx, |
| int (*handle_element)(CBS *cbs, struct pkcs12_context *ctx)) { |
| uint8_t *storage = NULL; |
| CBS in; |
| int ret = 0; |
| |
| // Although a BER->DER conversion is done at the beginning of |PKCS12_parse|, |
| // the ASN.1 data gets wrapped in OCTETSTRINGs and/or encrypted and the |
| // conversion cannot see through those wrappings. So each time we step |
| // through one we need to convert to DER again. |
| if (!CBS_asn1_ber_to_der(sequence, &in, &storage)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| return 0; |
| } |
| |
| CBS child; |
| if (!CBS_get_asn1(&in, &child, CBS_ASN1_SEQUENCE) || |
| CBS_len(&in) != 0) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| while (CBS_len(&child) > 0) { |
| CBS element; |
| if (!CBS_get_asn1(&child, &element, CBS_ASN1_SEQUENCE)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| if (!handle_element(&element, ctx)) { |
| goto err; |
| } |
| } |
| |
| ret = 1; |
| |
| err: |
| OPENSSL_free(storage); |
| return ret; |
| } |
| |
| // 1.2.840.113549.1.12.10.1.1 |
| static const uint8_t kKeyBag[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, |
| 0x01, 0x0c, 0x0a, 0x01, 0x01}; |
| |
| // 1.2.840.113549.1.12.10.1.2 |
| static const uint8_t kPKCS8ShroudedKeyBag[] = { |
| 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x0a, 0x01, 0x02}; |
| |
| // 1.2.840.113549.1.12.10.1.3 |
| static const uint8_t kCertBag[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, |
| 0x01, 0x0c, 0x0a, 0x01, 0x03}; |
| |
| // 1.2.840.113549.1.9.20 |
| static const uint8_t kFriendlyName[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
| 0x0d, 0x01, 0x09, 0x14}; |
| |
| // 1.2.840.113549.1.9.21 |
| static const uint8_t kLocalKeyID[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
| 0x0d, 0x01, 0x09, 0x15}; |
| |
| // 1.2.840.113549.1.9.22.1 |
| static const uint8_t kX509Certificate[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
| 0x0d, 0x01, 0x09, 0x16, 0x01}; |
| |
| // parse_bag_attributes parses the bagAttributes field of a SafeBag structure. |
| // It sets |*out_friendly_name| to a newly-allocated copy of the friendly name, |
| // encoded as a UTF-8 string, or NULL if there is none. It returns one on |
| // success and zero on error. |
| static int parse_bag_attributes(CBS *attrs, uint8_t **out_friendly_name, |
| size_t *out_friendly_name_len) { |
| *out_friendly_name = NULL; |
| *out_friendly_name_len = 0; |
| |
| // See https://tools.ietf.org/html/rfc7292#section-4.2. |
| while (CBS_len(attrs) != 0) { |
| CBS attr, oid, values; |
| if (!CBS_get_asn1(attrs, &attr, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1(&attr, &oid, CBS_ASN1_OBJECT) || |
| !CBS_get_asn1(&attr, &values, CBS_ASN1_SET) || |
| CBS_len(&attr) != 0) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| if (CBS_mem_equal(&oid, kFriendlyName, sizeof(kFriendlyName))) { |
| // See https://tools.ietf.org/html/rfc2985, section 5.5.1. |
| CBS value; |
| if (*out_friendly_name != NULL || |
| !CBS_get_asn1(&values, &value, CBS_ASN1_BMPSTRING) || |
| CBS_len(&values) != 0 || |
| CBS_len(&value) == 0) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| // Convert the friendly name to UTF-8. |
| CBB cbb; |
| if (!CBB_init(&cbb, CBS_len(&value))) { |
| OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| while (CBS_len(&value) != 0) { |
| uint32_t c; |
| if (!cbs_get_ucs2_be(&value, &c) || |
| !cbb_add_utf8(&cbb, c)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS); |
| CBB_cleanup(&cbb); |
| goto err; |
| } |
| } |
| if (!CBB_finish(&cbb, out_friendly_name, out_friendly_name_len)) { |
| OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE); |
| CBB_cleanup(&cbb); |
| goto err; |
| } |
| } |
| } |
| |
| return 1; |
| |
| err: |
| OPENSSL_free(*out_friendly_name); |
| *out_friendly_name = NULL; |
| *out_friendly_name_len = 0; |
| return 0; |
| } |
| |
| // PKCS12_handle_safe_bag parses a single SafeBag element in a PKCS#12 |
| // structure. |
| static int PKCS12_handle_safe_bag(CBS *safe_bag, struct pkcs12_context *ctx) { |
| CBS bag_id, wrapped_value, bag_attrs; |
| if (!CBS_get_asn1(safe_bag, &bag_id, CBS_ASN1_OBJECT) || |
| !CBS_get_asn1(safe_bag, &wrapped_value, |
| CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| return 0; |
| } |
| if (CBS_len(safe_bag) == 0) { |
| CBS_init(&bag_attrs, NULL, 0); |
| } else if (!CBS_get_asn1(safe_bag, &bag_attrs, CBS_ASN1_SET) || |
| CBS_len(safe_bag) != 0) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| return 0; |
| } |
| |
| const int is_key_bag = CBS_mem_equal(&bag_id, kKeyBag, sizeof(kKeyBag)); |
| const int is_shrouded_key_bag = CBS_mem_equal(&bag_id, kPKCS8ShroudedKeyBag, |
| sizeof(kPKCS8ShroudedKeyBag)); |
| if (is_key_bag || is_shrouded_key_bag) { |
| // See RFC 7292, section 4.2.1 and 4.2.2. |
| if (*ctx->out_key) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MULTIPLE_PRIVATE_KEYS_IN_PKCS12); |
| return 0; |
| } |
| |
| EVP_PKEY *pkey = |
| is_key_bag ? EVP_parse_private_key(&wrapped_value) |
| : PKCS8_parse_encrypted_private_key( |
| &wrapped_value, ctx->password, ctx->password_len); |
| if (pkey == NULL) { |
| return 0; |
| } |
| |
| if (CBS_len(&wrapped_value) != 0) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| EVP_PKEY_free(pkey); |
| return 0; |
| } |
| |
| *ctx->out_key = pkey; |
| return 1; |
| } |
| |
| if (CBS_mem_equal(&bag_id, kCertBag, sizeof(kCertBag))) { |
| // See RFC 7292, section 4.2.3. |
| CBS cert_bag, cert_type, wrapped_cert, cert; |
| if (!CBS_get_asn1(&wrapped_value, &cert_bag, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1(&cert_bag, &cert_type, CBS_ASN1_OBJECT) || |
| !CBS_get_asn1(&cert_bag, &wrapped_cert, |
| CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) || |
| !CBS_get_asn1(&wrapped_cert, &cert, CBS_ASN1_OCTETSTRING)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| return 0; |
| } |
| |
| // Skip unknown certificate types. |
| if (!CBS_mem_equal(&cert_type, kX509Certificate, |
| sizeof(kX509Certificate))) { |
| return 1; |
| } |
| |
| if (CBS_len(&cert) > LONG_MAX) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| return 0; |
| } |
| |
| const uint8_t *inp = CBS_data(&cert); |
| X509 *x509 = d2i_X509(NULL, &inp, (long)CBS_len(&cert)); |
| if (!x509) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| return 0; |
| } |
| |
| if (inp != CBS_data(&cert) + CBS_len(&cert)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| X509_free(x509); |
| return 0; |
| } |
| |
| uint8_t *friendly_name; |
| size_t friendly_name_len; |
| if (!parse_bag_attributes(&bag_attrs, &friendly_name, &friendly_name_len)) { |
| X509_free(x509); |
| return 0; |
| } |
| int ok = friendly_name_len == 0 || |
| X509_alias_set1(x509, friendly_name, friendly_name_len); |
| OPENSSL_free(friendly_name); |
| if (!ok || |
| 0 == sk_X509_push(ctx->out_certs, x509)) { |
| X509_free(x509); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| // Unknown element type - ignore it. |
| return 1; |
| } |
| |
| // 1.2.840.113549.1.7.1 |
| static const uint8_t kPKCS7Data[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
| 0x0d, 0x01, 0x07, 0x01}; |
| |
| // 1.2.840.113549.1.7.6 |
| static const uint8_t kPKCS7EncryptedData[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, |
| 0x0d, 0x01, 0x07, 0x06}; |
| |
| // PKCS12_handle_content_info parses a single PKCS#7 ContentInfo element in a |
| // PKCS#12 structure. |
| static int PKCS12_handle_content_info(CBS *content_info, |
| struct pkcs12_context *ctx) { |
| CBS content_type, wrapped_contents, contents; |
| int ret = 0; |
| uint8_t *storage = NULL; |
| |
| if (!CBS_get_asn1(content_info, &content_type, CBS_ASN1_OBJECT) || |
| !CBS_get_asn1(content_info, &wrapped_contents, |
| CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) || |
| CBS_len(content_info) != 0) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| if (CBS_mem_equal(&content_type, kPKCS7EncryptedData, |
| sizeof(kPKCS7EncryptedData))) { |
| // See https://tools.ietf.org/html/rfc2315#section-13. |
| // |
| // PKCS#7 encrypted data inside a PKCS#12 structure is generally an |
| // encrypted certificate bag and it's generally encrypted with 40-bit |
| // RC2-CBC. |
| CBS version_bytes, eci, contents_type, ai, encrypted_contents; |
| uint8_t *out; |
| size_t out_len; |
| |
| if (!CBS_get_asn1(&wrapped_contents, &contents, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1(&contents, &version_bytes, CBS_ASN1_INTEGER) || |
| // EncryptedContentInfo, see |
| // https://tools.ietf.org/html/rfc2315#section-10.1 |
| !CBS_get_asn1(&contents, &eci, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1(&eci, &contents_type, CBS_ASN1_OBJECT) || |
| // AlgorithmIdentifier, see |
| // https://tools.ietf.org/html/rfc5280#section-4.1.1.2 |
| !CBS_get_asn1(&eci, &ai, CBS_ASN1_SEQUENCE) || |
| !CBS_get_asn1_implicit_string( |
| &eci, &encrypted_contents, &storage, |
| CBS_ASN1_CONTEXT_SPECIFIC | 0, CBS_ASN1_OCTETSTRING)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| if (!CBS_mem_equal(&contents_type, kPKCS7Data, sizeof(kPKCS7Data))) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| if (!pkcs8_pbe_decrypt(&out, &out_len, &ai, ctx->password, |
| ctx->password_len, CBS_data(&encrypted_contents), |
| CBS_len(&encrypted_contents))) { |
| goto err; |
| } |
| |
| CBS safe_contents; |
| CBS_init(&safe_contents, out, out_len); |
| ret = PKCS12_handle_sequence(&safe_contents, ctx, PKCS12_handle_safe_bag); |
| OPENSSL_free(out); |
| } else if (CBS_mem_equal(&content_type, kPKCS7Data, sizeof(kPKCS7Data))) { |
| CBS octet_string_contents; |
| |
| if (!CBS_get_asn1(&wrapped_contents, &octet_string_contents, |
| CBS_ASN1_OCTETSTRING)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| ret = PKCS12_handle_sequence(&octet_string_contents, ctx, |
| PKCS12_handle_safe_bag); |
| } else { |
| // Unknown element type - ignore it. |
| ret = 1; |
| } |
| |
| err: |
| OPENSSL_free(storage); |
| return ret; |
| } |
| |
| static int pkcs12_check_mac(int *out_mac_ok, const char *password, |
| size_t password_len, const CBS *salt, |
| unsigned iterations, const EVP_MD *md, |
| const CBS *authsafes, const CBS *expected_mac) { |
| int ret = 0; |
| uint8_t hmac_key[EVP_MAX_MD_SIZE]; |
| if (!pkcs12_key_gen(password, password_len, CBS_data(salt), CBS_len(salt), |
| PKCS12_MAC_ID, iterations, EVP_MD_size(md), hmac_key, |
| md)) { |
| goto err; |
| } |
| |
| uint8_t hmac[EVP_MAX_MD_SIZE]; |
| unsigned hmac_len; |
| if (NULL == HMAC(md, hmac_key, EVP_MD_size(md), CBS_data(authsafes), |
| CBS_len(authsafes), hmac, &hmac_len)) { |
| goto err; |
| } |
| |
| *out_mac_ok = CBS_mem_equal(expected_mac, hmac, hmac_len); |
| #if defined(BORINGSSL_UNSAFE_FUZZER_MODE) |
| *out_mac_ok = 1; |
| #endif |
| ret = 1; |
| |
| err: |
| OPENSSL_cleanse(hmac_key, sizeof(hmac_key)); |
| return ret; |
| } |
| |
| |
| int PKCS12_get_key_and_certs(EVP_PKEY **out_key, STACK_OF(X509) *out_certs, |
| CBS *ber_in, const char *password) { |
| uint8_t *storage = NULL; |
| CBS in, pfx, mac_data, authsafe, content_type, wrapped_authsafes, authsafes; |
| uint64_t version; |
| int ret = 0; |
| struct pkcs12_context ctx; |
| const size_t original_out_certs_len = sk_X509_num(out_certs); |
| |
| // The input may be in BER format. |
| if (!CBS_asn1_ber_to_der(ber_in, &in, &storage)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| return 0; |
| } |
| |
| *out_key = NULL; |
| OPENSSL_memset(&ctx, 0, sizeof(ctx)); |
| |
| // See ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-12/pkcs-12v1.pdf, section |
| // four. |
| if (!CBS_get_asn1(&in, &pfx, CBS_ASN1_SEQUENCE) || |
| CBS_len(&in) != 0 || |
| !CBS_get_asn1_uint64(&pfx, &version)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| if (version < 3) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_VERSION); |
| goto err; |
| } |
| |
| if (!CBS_get_asn1(&pfx, &authsafe, CBS_ASN1_SEQUENCE)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| if (CBS_len(&pfx) == 0) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MISSING_MAC); |
| goto err; |
| } |
| |
| if (!CBS_get_asn1(&pfx, &mac_data, CBS_ASN1_SEQUENCE)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| // authsafe is a PKCS#7 ContentInfo. See |
| // https://tools.ietf.org/html/rfc2315#section-7. |
| if (!CBS_get_asn1(&authsafe, &content_type, CBS_ASN1_OBJECT) || |
| !CBS_get_asn1(&authsafe, &wrapped_authsafes, |
| CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| // The content type can either be data or signedData. The latter indicates |
| // that it's signed by a public key, which isn't supported. |
| if (!CBS_mem_equal(&content_type, kPKCS7Data, sizeof(kPKCS7Data))) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_PKCS12_PUBLIC_KEY_INTEGRITY_NOT_SUPPORTED); |
| goto err; |
| } |
| |
| if (!CBS_get_asn1(&wrapped_authsafes, &authsafes, CBS_ASN1_OCTETSTRING)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| ctx.out_key = out_key; |
| ctx.out_certs = out_certs; |
| ctx.password = password; |
| ctx.password_len = password != NULL ? strlen(password) : 0; |
| |
| // Verify the MAC. |
| { |
| CBS mac, salt, expected_mac; |
| if (!CBS_get_asn1(&mac_data, &mac, CBS_ASN1_SEQUENCE)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| const EVP_MD *md = EVP_parse_digest_algorithm(&mac); |
| if (md == NULL) { |
| goto err; |
| } |
| |
| if (!CBS_get_asn1(&mac, &expected_mac, CBS_ASN1_OCTETSTRING) || |
| !CBS_get_asn1(&mac_data, &salt, CBS_ASN1_OCTETSTRING)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| |
| // The iteration count is optional and the default is one. |
| uint64_t iterations = 1; |
| if (CBS_len(&mac_data) > 0) { |
| if (!CBS_get_asn1_uint64(&mac_data, &iterations) || |
| !pkcs12_iterations_acceptable(iterations)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA); |
| goto err; |
| } |
| } |
| |
| int mac_ok; |
| if (!pkcs12_check_mac(&mac_ok, ctx.password, ctx.password_len, &salt, |
| iterations, md, &authsafes, &expected_mac)) { |
| goto err; |
| } |
| if (!mac_ok && ctx.password_len == 0) { |
| // PKCS#12 encodes passwords as NUL-terminated UCS-2, so the empty |
| // password is encoded as {0, 0}. Some implementations use the empty byte |
| // array for "no password". OpenSSL considers a non-NULL password as {0, |
| // 0} and a NULL password as {}. It then, in high-level PKCS#12 parsing |
| // code, tries both options. We match this behavior. |
| ctx.password = ctx.password != NULL ? NULL : ""; |
| if (!pkcs12_check_mac(&mac_ok, ctx.password, ctx.password_len, &salt, |
| iterations, md, &authsafes, &expected_mac)) { |
| goto err; |
| } |
| } |
| if (!mac_ok) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INCORRECT_PASSWORD); |
| goto err; |
| } |
| } |
| |
| // authsafes contains a series of PKCS#7 ContentInfos. |
| if (!PKCS12_handle_sequence(&authsafes, &ctx, PKCS12_handle_content_info)) { |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| OPENSSL_free(storage); |
| if (!ret) { |
| EVP_PKEY_free(*out_key); |
| *out_key = NULL; |
| while (sk_X509_num(out_certs) > original_out_certs_len) { |
| X509 *x509 = sk_X509_pop(out_certs); |
| X509_free(x509); |
| } |
| } |
| |
| return ret; |
| } |
| |
| void PKCS12_PBE_add(void) {} |
| |
| struct pkcs12_st { |
| uint8_t *ber_bytes; |
| size_t ber_len; |
| }; |
| |
| PKCS12 *d2i_PKCS12(PKCS12 **out_p12, const uint8_t **ber_bytes, |
| size_t ber_len) { |
| PKCS12 *p12; |
| |
| p12 = OPENSSL_malloc(sizeof(PKCS12)); |
| if (!p12) { |
| return NULL; |
| } |
| |
| p12->ber_bytes = OPENSSL_malloc(ber_len); |
| if (!p12->ber_bytes) { |
| OPENSSL_free(p12); |
| return NULL; |
| } |
| |
| OPENSSL_memcpy(p12->ber_bytes, *ber_bytes, ber_len); |
| p12->ber_len = ber_len; |
| *ber_bytes += ber_len; |
| |
| if (out_p12) { |
| PKCS12_free(*out_p12); |
| |
| *out_p12 = p12; |
| } |
| |
| return p12; |
| } |
| |
| PKCS12* d2i_PKCS12_bio(BIO *bio, PKCS12 **out_p12) { |
| size_t used = 0; |
| BUF_MEM *buf; |
| const uint8_t *dummy; |
| static const size_t kMaxSize = 256 * 1024; |
| PKCS12 *ret = NULL; |
| |
| buf = BUF_MEM_new(); |
| if (buf == NULL) { |
| return NULL; |
| } |
| if (BUF_MEM_grow(buf, 8192) == 0) { |
| goto out; |
| } |
| |
| for (;;) { |
| int n = BIO_read(bio, &buf->data[used], buf->length - used); |
| if (n < 0) { |
| if (used == 0) { |
| goto out; |
| } |
| // Workaround a bug in node.js. It uses a memory BIO for this in the wrong |
| // mode. |
| n = 0; |
| } |
| |
| if (n == 0) { |
| break; |
| } |
| used += n; |
| |
| if (used < buf->length) { |
| continue; |
| } |
| |
| if (buf->length > kMaxSize || |
| BUF_MEM_grow(buf, buf->length * 2) == 0) { |
| goto out; |
| } |
| } |
| |
| dummy = (uint8_t*) buf->data; |
| ret = d2i_PKCS12(out_p12, &dummy, used); |
| |
| out: |
| BUF_MEM_free(buf); |
| return ret; |
| } |
| |
| PKCS12* d2i_PKCS12_fp(FILE *fp, PKCS12 **out_p12) { |
| BIO *bio; |
| PKCS12 *ret; |
| |
| bio = BIO_new_fp(fp, 0 /* don't take ownership */); |
| if (!bio) { |
| return NULL; |
| } |
| |
| ret = d2i_PKCS12_bio(bio, out_p12); |
| BIO_free(bio); |
| return ret; |
| } |
| |
| int i2d_PKCS12(const PKCS12 *p12, uint8_t **out) { |
| if (p12->ber_len > INT_MAX) { |
| OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW); |
| return -1; |
| } |
| |
| if (out == NULL) { |
| return (int)p12->ber_len; |
| } |
| |
| if (*out == NULL) { |
| *out = OPENSSL_malloc(p12->ber_len); |
| if (*out == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE); |
| return -1; |
| } |
| OPENSSL_memcpy(*out, p12->ber_bytes, p12->ber_len); |
| } else { |
| OPENSSL_memcpy(*out, p12->ber_bytes, p12->ber_len); |
| *out += p12->ber_len; |
| } |
| return (int)p12->ber_len; |
| } |
| |
| int i2d_PKCS12_bio(BIO *bio, const PKCS12 *p12) { |
| return BIO_write_all(bio, p12->ber_bytes, p12->ber_len); |
| } |
| |
| int i2d_PKCS12_fp(FILE *fp, const PKCS12 *p12) { |
| BIO *bio = BIO_new_fp(fp, 0 /* don't take ownership */); |
| if (bio == NULL) { |
| return 0; |
| } |
| |
| int ret = i2d_PKCS12_bio(bio, p12); |
| BIO_free(bio); |
| return ret; |
| } |
| |
| int PKCS12_parse(const PKCS12 *p12, const char *password, EVP_PKEY **out_pkey, |
| X509 **out_cert, STACK_OF(X509) **out_ca_certs) { |
| CBS ber_bytes; |
| STACK_OF(X509) *ca_certs = NULL; |
| char ca_certs_alloced = 0; |
| |
| if (out_ca_certs != NULL && *out_ca_certs != NULL) { |
| ca_certs = *out_ca_certs; |
| } |
| |
| if (!ca_certs) { |
| ca_certs = sk_X509_new_null(); |
| if (ca_certs == NULL) { |
| OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE); |
| return 0; |
| } |
| ca_certs_alloced = 1; |
| } |
| |
| CBS_init(&ber_bytes, p12->ber_bytes, p12->ber_len); |
| if (!PKCS12_get_key_and_certs(out_pkey, ca_certs, &ber_bytes, password)) { |
| if (ca_certs_alloced) { |
| sk_X509_free(ca_certs); |
| } |
| return 0; |
| } |
| |
| // OpenSSL selects the last certificate which matches the private key as |
| // |out_cert|. |
| *out_cert = NULL; |
| size_t num_certs = sk_X509_num(ca_certs); |
| if (*out_pkey != NULL && num_certs > 0) { |
| for (size_t i = num_certs - 1; i < num_certs; i--) { |
| X509 *cert = sk_X509_value(ca_certs, i); |
| if (X509_check_private_key(cert, *out_pkey)) { |
| *out_cert = cert; |
| sk_X509_delete(ca_certs, i); |
| break; |
| } |
| ERR_clear_error(); |
| } |
| } |
| |
| if (out_ca_certs) { |
| *out_ca_certs = ca_certs; |
| } else { |
| sk_X509_pop_free(ca_certs, X509_free); |
| } |
| |
| return 1; |
| } |
| |
| int PKCS12_verify_mac(const PKCS12 *p12, const char *password, |
| int password_len) { |
| if (password == NULL) { |
| if (password_len != 0) { |
| return 0; |
| } |
| } else if (password_len != -1 && |
| (password[password_len] != 0 || |
| OPENSSL_memchr(password, 0, password_len) != NULL)) { |
| return 0; |
| } |
| |
| EVP_PKEY *pkey = NULL; |
| X509 *cert = NULL; |
| if (!PKCS12_parse(p12, password, &pkey, &cert, NULL)) { |
| ERR_clear_error(); |
| return 0; |
| } |
| |
| EVP_PKEY_free(pkey); |
| X509_free(cert); |
| |
| return 1; |
| } |
| |
| // add_bag_attributes adds the bagAttributes field of a SafeBag structure, |
| // containing the specified friendlyName and localKeyId attributes. |
| static int add_bag_attributes(CBB *bag, const char *name, const uint8_t *key_id, |
| size_t key_id_len) { |
| if (name == NULL && key_id_len == 0) { |
| return 1; // Omit the OPTIONAL SET. |
| } |
| // See https://tools.ietf.org/html/rfc7292#section-4.2. |
| CBB attrs, attr, oid, values, value; |
| if (!CBB_add_asn1(bag, &attrs, CBS_ASN1_SET)) { |
| return 0; |
| } |
| if (name != NULL) { |
| // See https://tools.ietf.org/html/rfc2985, section 5.5.1. |
| if (!CBB_add_asn1(&attrs, &attr, CBS_ASN1_SEQUENCE) || |
| !CBB_add_asn1(&attr, &oid, CBS_ASN1_OBJECT) || |
| !CBB_add_bytes(&oid, kFriendlyName, sizeof(kFriendlyName)) || |
| !CBB_add_asn1(&attr, &values, CBS_ASN1_SET) || |
| !CBB_add_asn1(&values, &value, CBS_ASN1_BMPSTRING)) { |
| return 0; |
| } |
| // Convert the friendly name to a BMPString. |
| CBS name_cbs; |
| CBS_init(&name_cbs, (const uint8_t *)name, strlen(name)); |
| while (CBS_len(&name_cbs) != 0) { |
| uint32_t c; |
| if (!cbs_get_utf8(&name_cbs, &c) || |
| !cbb_add_ucs2_be(&value, c)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS); |
| return 0; |
| } |
| } |
| } |
| if (key_id_len != 0) { |
| // See https://tools.ietf.org/html/rfc2985, section 5.5.2. |
| if (!CBB_add_asn1(&attrs, &attr, CBS_ASN1_SEQUENCE) || |
| !CBB_add_asn1(&attr, &oid, CBS_ASN1_OBJECT) || |
| !CBB_add_bytes(&oid, kLocalKeyID, sizeof(kLocalKeyID)) || |
| !CBB_add_asn1(&attr, &values, CBS_ASN1_SET) || |
| !CBB_add_asn1(&values, &value, CBS_ASN1_OCTETSTRING) || |
| !CBB_add_bytes(&value, key_id, key_id_len)) { |
| return 0; |
| } |
| } |
| return CBB_flush_asn1_set_of(&attrs) && |
| CBB_flush(bag); |
| } |
| |
| static int add_cert_bag(CBB *cbb, X509 *cert, const char *name, |
| const uint8_t *key_id, size_t key_id_len) { |
| CBB bag, bag_oid, bag_contents, cert_bag, cert_type, wrapped_cert, cert_value; |
| if (// See https://tools.ietf.org/html/rfc7292#section-4.2. |
| !CBB_add_asn1(cbb, &bag, CBS_ASN1_SEQUENCE) || |
| !CBB_add_asn1(&bag, &bag_oid, CBS_ASN1_OBJECT) || |
| !CBB_add_bytes(&bag_oid, kCertBag, sizeof(kCertBag)) || |
| !CBB_add_asn1(&bag, &bag_contents, |
| CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
| // See https://tools.ietf.org/html/rfc7292#section-4.2.3. |
| !CBB_add_asn1(&bag_contents, &cert_bag, CBS_ASN1_SEQUENCE) || |
| !CBB_add_asn1(&cert_bag, &cert_type, CBS_ASN1_OBJECT) || |
| !CBB_add_bytes(&cert_type, kX509Certificate, sizeof(kX509Certificate)) || |
| !CBB_add_asn1(&cert_bag, &wrapped_cert, |
| CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
| !CBB_add_asn1(&wrapped_cert, &cert_value, CBS_ASN1_OCTETSTRING)) { |
| return 0; |
| } |
| uint8_t *buf; |
| int len = i2d_X509(cert, NULL); |
| if (len < 0 || |
| !CBB_add_space(&cert_value, &buf, (size_t)len) || |
| i2d_X509(cert, &buf) < 0 || |
| !add_bag_attributes(&bag, name, key_id, key_id_len) || |
| !CBB_flush(cbb)) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int add_cert_safe_contents(CBB *cbb, X509 *cert, |
| const STACK_OF(X509) *chain, const char *name, |
| const uint8_t *key_id, size_t key_id_len) { |
| CBB safe_contents; |
| if (!CBB_add_asn1(cbb, &safe_contents, CBS_ASN1_SEQUENCE) || |
| (cert != NULL && |
| !add_cert_bag(&safe_contents, cert, name, key_id, key_id_len))) { |
| return 0; |
| } |
| |
| for (size_t i = 0; i < sk_X509_num(chain); i++) { |
| // Only the leaf certificate gets attributes. |
| if (!add_cert_bag(&safe_contents, sk_X509_value(chain, i), NULL, NULL, 0)) { |
| return 0; |
| } |
| } |
| |
| return CBB_flush(cbb); |
| } |
| |
| static int add_encrypted_data(CBB *out, int pbe_nid, const char *password, |
| size_t password_len, unsigned iterations, |
| const uint8_t *in, size_t in_len) { |
| uint8_t salt[PKCS5_SALT_LEN]; |
| if (!RAND_bytes(salt, sizeof(salt))) { |
| return 0; |
| } |
| |
| int ret = 0; |
| EVP_CIPHER_CTX ctx; |
| EVP_CIPHER_CTX_init(&ctx); |
| CBB content_info, type, wrapper, encrypted_data, encrypted_content_info, |
| inner_type, encrypted_content; |
| if (// Add the ContentInfo wrapping. |
| !CBB_add_asn1(out, &content_info, CBS_ASN1_SEQUENCE) || |
| !CBB_add_asn1(&content_info, &type, CBS_ASN1_OBJECT) || |
| !CBB_add_bytes(&type, kPKCS7EncryptedData, sizeof(kPKCS7EncryptedData)) || |
| !CBB_add_asn1(&content_info, &wrapper, |
| CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
| // See https://tools.ietf.org/html/rfc2315#section-13. |
| !CBB_add_asn1(&wrapper, &encrypted_data, CBS_ASN1_SEQUENCE) || |
| !CBB_add_asn1_uint64(&encrypted_data, 0 /* version */) || |
| // See https://tools.ietf.org/html/rfc2315#section-10.1. |
| !CBB_add_asn1(&encrypted_data, &encrypted_content_info, |
| CBS_ASN1_SEQUENCE) || |
| !CBB_add_asn1(&encrypted_content_info, &inner_type, CBS_ASN1_OBJECT) || |
| !CBB_add_bytes(&inner_type, kPKCS7Data, sizeof(kPKCS7Data)) || |
| // Set up encryption and fill in contentEncryptionAlgorithm. |
| !pkcs12_pbe_encrypt_init(&encrypted_content_info, &ctx, pbe_nid, |
| iterations, password, password_len, salt, |
| sizeof(salt)) || |
| // Note this tag is primitive. It is an implicitly-tagged OCTET_STRING, so |
| // it inherits the inner tag's constructed bit. |
| !CBB_add_asn1(&encrypted_content_info, &encrypted_content, |
| CBS_ASN1_CONTEXT_SPECIFIC | 0)) { |
| goto err; |
| } |
| |
| size_t max_out = in_len + EVP_CIPHER_CTX_block_size(&ctx); |
| if (max_out < in_len) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_TOO_LONG); |
| goto err; |
| } |
| |
| uint8_t *ptr; |
| int n1, n2; |
| if (!CBB_reserve(&encrypted_content, &ptr, max_out) || |
| !EVP_CipherUpdate(&ctx, ptr, &n1, in, in_len) || |
| !EVP_CipherFinal_ex(&ctx, ptr + n1, &n2) || |
| !CBB_did_write(&encrypted_content, n1 + n2) || |
| !CBB_flush(out)) { |
| goto err; |
| } |
| |
| ret = 1; |
| |
| err: |
| EVP_CIPHER_CTX_cleanup(&ctx); |
| return ret; |
| } |
| |
| PKCS12 *PKCS12_create(const char *password, const char *name, |
| const EVP_PKEY *pkey, X509 *cert, |
| const STACK_OF(X509)* chain, int key_nid, int cert_nid, |
| int iterations, int mac_iterations, int key_type) { |
| if (key_nid == 0) { |
| key_nid = NID_pbe_WithSHA1And3_Key_TripleDES_CBC; |
| } |
| if (cert_nid == 0) { |
| cert_nid = NID_pbe_WithSHA1And40BitRC2_CBC; |
| } |
| if (iterations == 0) { |
| iterations = PKCS5_DEFAULT_ITERATIONS; |
| } |
| if (mac_iterations == 0) { |
| mac_iterations = 1; |
| } |
| if (// In OpenSSL, this specifies a non-standard Microsoft key usage extension |
| // which we do not currently support. |
| key_type != 0 || |
| // In OpenSSL, -1 here means to omit the MAC, which we do not |
| // currently support. Omitting it is also invalid for a password-based |
| // PKCS#12 file. |
| mac_iterations < 0 || |
| // Don't encode empty objects. |
| (pkey == NULL && cert == NULL && sk_X509_num(chain) == 0)) { |
| OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_OPTIONS); |
| return 0; |
| } |
| |
| // PKCS#12 is a very confusing recursive data format, built out of another |
| // recursive data format. Section 5.1 of RFC 7292 describes the encoding |
| // algorithm, but there is no clear overview. A quick summary: |
| // |
| // PKCS#7 defines a ContentInfo structure, which is a overgeneralized typed |
| // combinator structure for applying cryptography. We care about two types. A |
| // data ContentInfo contains an OCTET STRING and is a leaf node of the |
| // combinator tree. An encrypted-data ContentInfo contains encryption |
| // parameters (key derivation and encryption) and wraps another ContentInfo, |
| // usually data. |
| // |
| // A PKCS#12 file is a PFX structure (section 4), which contains a single data |
| // ContentInfo and a MAC over it. This root ContentInfo is the |
| // AuthenticatedSafe and its payload is a SEQUENCE of other ContentInfos, so |
| // that different parts of the PKCS#12 file can by differently protected. |
| // |
| // Each ContentInfo in the AuthenticatedSafe, after undoing all the PKCS#7 |
| // combinators, has SafeContents payload. A SafeContents is a SEQUENCE of |
| // SafeBag. SafeBag is PKCS#12's typed structure, with subtypes such as KeyBag |
| // and CertBag. Confusingly, there is a SafeContents bag type which itself |
| // recursively contains more SafeBags, but we do not implement this. Bags also |
| // can have attributes. |
| // |
| // The grouping of SafeBags into intermediate ContentInfos does not appear to |
| // be significant, except that all SafeBags sharing a ContentInfo have the |
| // same level of protection. Additionally, while keys may be encrypted by |
| // placing a KeyBag in an encrypted-data ContentInfo, PKCS#12 also defines a |
| // key-specific encryption container, PKCS8ShroudedKeyBag, which is used |
| // instead. |
| |
| // Note that |password| may be NULL to specify no password, rather than the |
| // empty string. They are encoded differently in PKCS#12. (One is the empty |
| // byte array and the other is NUL-terminated UCS-2.) |
| size_t password_len = password != NULL ? strlen(password) : 0; |
| |
| uint8_t key_id[EVP_MAX_MD_SIZE]; |
| unsigned key_id_len = 0; |
| if (cert != NULL && pkey != NULL) { |
| if (!X509_check_private_key(cert, pkey) || |
| // Matching OpenSSL, use the SHA-1 hash of the certificate as the local |
| // key ID. Some PKCS#12 consumers require one to connect the private key |
| // and certificate. |
| !X509_digest(cert, EVP_sha1(), key_id, &key_id_len)) { |
| return 0; |
| } |
| } |
| |
| // See https://tools.ietf.org/html/rfc7292#section-4. |
| PKCS12 *ret = NULL; |
| CBB cbb, pfx, auth_safe, auth_safe_oid, auth_safe_wrapper, auth_safe_data, |
| content_infos; |
| uint8_t mac_key[EVP_MAX_MD_SIZE]; |
| if (!CBB_init(&cbb, 0) || |
| !CBB_add_asn1(&cbb, &pfx, CBS_ASN1_SEQUENCE) || |
| !CBB_add_asn1_uint64(&pfx, 3) || |
| // auth_safe is a data ContentInfo. |
| !CBB_add_asn1(&pfx, &auth_safe, CBS_ASN1_SEQUENCE) || |
| !CBB_add_asn1(&auth_safe, &auth_safe_oid, CBS_ASN1_OBJECT) || |
| !CBB_add_bytes(&auth_safe_oid, kPKCS7Data, sizeof(kPKCS7Data)) || |
| !CBB_add_asn1(&auth_safe, &auth_safe_wrapper, |
| CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
| !CBB_add_asn1(&auth_safe_wrapper, &auth_safe_data, |
| CBS_ASN1_OCTETSTRING) || |
| // See https://tools.ietf.org/html/rfc7292#section-4.1. |auth_safe|'s |
| // contains a SEQUENCE of ContentInfos. |
| !CBB_add_asn1(&auth_safe_data, &content_infos, CBS_ASN1_SEQUENCE)) { |
| goto err; |
| } |
| |
| // If there are any certificates, place them in CertBags wrapped in a single |
| // encrypted ContentInfo. |
| if (cert != NULL || sk_X509_num(chain) > 0) { |
| if (cert_nid < 0) { |
| // Place the certificates in an unencrypted ContentInfo. This could be |
| // more compactly-encoded by reusing the same ContentInfo as the key, but |
| // OpenSSL does not do this. We keep them separate for consistency. (Keys, |
| // even when encrypted, are always placed in unencrypted ContentInfos. |
| // PKCS#12 defines bag-level encryption for keys.) |
| CBB content_info, oid, wrapper, data; |
| if (!CBB_add_asn1(&content_infos, &content_info, CBS_ASN1_SEQUENCE) || |
| !CBB_add_asn1(&content_info, &oid, CBS_ASN1_OBJECT) || |
| !CBB_add_bytes(&oid, kPKCS7Data, sizeof(kPKCS7Data)) || |
| !CBB_add_asn1(&content_info, &wrapper, |
| CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
| !CBB_add_asn1(&wrapper, &data, CBS_ASN1_OCTETSTRING) || |
| !add_cert_safe_contents(&data, cert, chain, name, key_id, |
| key_id_len) || |
| !CBB_flush(&content_infos)) { |
| goto err; |
| } |
| } else { |
| CBB plaintext_cbb; |
| int ok = CBB_init(&plaintext_cbb, 0) && |
| add_cert_safe_contents(&plaintext_cbb, cert, chain, name, key_id, |
| key_id_len) && |
| add_encrypted_data( |
| &content_infos, cert_nid, password, password_len, iterations, |
| CBB_data(&plaintext_cbb), CBB_len(&plaintext_cbb)); |
| CBB_cleanup(&plaintext_cbb); |
| if (!ok) { |
| goto err; |
| } |
| } |
| } |
| |
| // If there is a key, place it in a single KeyBag or PKCS8ShroudedKeyBag |
| // wrapped in an unencrypted ContentInfo. (One could also place it in a KeyBag |
| // inside an encrypted ContentInfo, but OpenSSL does not do this and some |
| // PKCS#12 consumers do not support KeyBags.) |
| if (pkey != NULL) { |
| CBB content_info, oid, wrapper, data, safe_contents, bag, bag_oid, |
| bag_contents; |
| if (// Add another data ContentInfo. |
| !CBB_add_asn1(&content_infos, &content_info, CBS_ASN1_SEQUENCE) || |
| !CBB_add_asn1(&content_info, &oid, CBS_ASN1_OBJECT) || |
| !CBB_add_bytes(&oid, kPKCS7Data, sizeof(kPKCS7Data)) || |
| !CBB_add_asn1(&content_info, &wrapper, |
| CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
| !CBB_add_asn1(&wrapper, &data, CBS_ASN1_OCTETSTRING) || |
| !CBB_add_asn1(&data, &safe_contents, CBS_ASN1_SEQUENCE) || |
| // Add a SafeBag containing a PKCS8ShroudedKeyBag. |
| !CBB_add_asn1(&safe_contents, &bag, CBS_ASN1_SEQUENCE) || |
| !CBB_add_asn1(&bag, &bag_oid, CBS_ASN1_OBJECT)) { |
| goto err; |
| } |
| if (key_nid < 0) { |
| if (!CBB_add_bytes(&bag_oid, kKeyBag, sizeof(kKeyBag)) || |
| !CBB_add_asn1(&bag, &bag_contents, |
| CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
| !EVP_marshal_private_key(&bag_contents, pkey)) { |
| goto err; |
| } |
| } else { |
| if (!CBB_add_bytes(&bag_oid, kPKCS8ShroudedKeyBag, |
| sizeof(kPKCS8ShroudedKeyBag)) || |
| !CBB_add_asn1(&bag, &bag_contents, |
| CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) || |
| !PKCS8_marshal_encrypted_private_key( |
| &bag_contents, key_nid, NULL, password, password_len, |
| NULL /* generate a random salt */, |
| 0 /* use default salt length */, iterations, pkey)) { |
| goto err; |
| } |
| } |
| if (!add_bag_attributes(&bag, name, key_id, key_id_len) || |
| !CBB_flush(&content_infos)) { |
| goto err; |
| } |
| } |
| |
| // Compute the MAC. Match OpenSSL in using SHA-1 as the hash function. The MAC |
| // covers |auth_safe_data|. |
| const EVP_MD *mac_md = EVP_sha1(); |
| uint8_t mac_salt[PKCS5_SALT_LEN]; |
| uint8_t mac[EVP_MAX_MD_SIZE]; |
| unsigned mac_len; |
| if (!CBB_flush(&auth_safe_data) || |
| !RAND_bytes(mac_salt, sizeof(mac_salt)) || |
| !pkcs12_key_gen(password, password_len, mac_salt, sizeof(mac_salt), |
| PKCS12_MAC_ID, mac_iterations, EVP_MD_size(mac_md), |
| mac_key, mac_md) || |
| !HMAC(mac_md, mac_key, EVP_MD_size(mac_md), CBB_data(&auth_safe_data), |
| CBB_len(&auth_safe_data), mac, &mac_len)) { |
| goto err; |
| } |
| |
| CBB mac_data, digest_info, mac_cbb, mac_salt_cbb; |
| if (!CBB_add_asn1(&pfx, &mac_data, CBS_ASN1_SEQUENCE) || |
| !CBB_add_asn1(&mac_data, &digest_info, CBS_ASN1_SEQUENCE) || |
| !EVP_marshal_digest_algorithm(&digest_info, mac_md) || |
| !CBB_add_asn1(&digest_info, &mac_cbb, CBS_ASN1_OCTETSTRING) || |
| !CBB_add_bytes(&mac_cbb, mac, mac_len) || |
| !CBB_add_asn1(&mac_data, &mac_salt_cbb, CBS_ASN1_OCTETSTRING) || |
| !CBB_add_bytes(&mac_salt_cbb, mac_salt, sizeof(mac_salt)) || |
| // The iteration count has a DEFAULT of 1, but RFC 7292 says "The default |
| // is for historical reasons and its use is deprecated." Thus we |
| // explicitly encode the iteration count, though it is not valid DER. |
| !CBB_add_asn1_uint64(&mac_data, mac_iterations)) { |
| goto err; |
| } |
| |
| ret = OPENSSL_malloc(sizeof(PKCS12)); |
| if (ret == NULL || |
| !CBB_finish(&cbb, &ret->ber_bytes, &ret->ber_len)) { |
| OPENSSL_free(ret); |
| ret = NULL; |
| goto err; |
| } |
| |
| err: |
| OPENSSL_cleanse(mac_key, sizeof(mac_key)); |
| CBB_cleanup(&cbb); |
| return ret; |
| } |
| |
| void PKCS12_free(PKCS12 *p12) { |
| if (p12 == NULL) { |
| return; |
| } |
| OPENSSL_free(p12->ber_bytes); |
| OPENSSL_free(p12); |
| } |