Bring in the core of chromium certificate verifier as libpki
Initially this leaves the canonical source in chrome, Additions
and fillins are committed directly, the chrome files are coverted
using the IMPORT script run from the pki directory for the moment.
The intention here is to continue frequent automatic conversion
(and avoid wholesale cosmetic changes in here for now) until
chrome converts to use these files in place of it's versions.
At that point these will become the definiative files, and the
IMPORT script can be tossed out.
A middle step along the way will be to change google3's verify.cc
in third_party/chromium_certificate_verifier to use this instead
of it's own extracted copy.
Status (and what is not done yet) being roughly tracked in README.md
Bug: chromium:1322914
Change-Id: Ibdb5479bc68985fa61ce6b10f98f31f6b3a7cbdf
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/60285
Commit-Queue: Bob Beck <bbe@google.com>
Reviewed-by: Adam Langley <agl@google.com>
diff --git a/pki/parse_values_unittest.cc b/pki/parse_values_unittest.cc
new file mode 100644
index 0000000..6431c72
--- /dev/null
+++ b/pki/parse_values_unittest.cc
@@ -0,0 +1,465 @@
+// Copyright 2015 The Chromium Authors
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "parse_values.h"
+
+#include <stdint.h>
+
+#include <gtest/gtest.h>
+
+namespace bssl::der::test {
+
+namespace {
+
+template <size_t N>
+Input FromStringLiteral(const char(&data)[N]) {
+ // Strings are null-terminated. The null terminating byte shouldn't be
+ // included in the Input, so the size is N - 1 instead of N.
+ return Input(reinterpret_cast<const uint8_t*>(data), N - 1);
+}
+
+} // namespace
+
+TEST(ParseValuesTest, ParseBool) {
+ uint8_t buf[] = {0xFF, 0x00};
+ Input value(buf, 1);
+ bool out;
+ EXPECT_TRUE(ParseBool(value, &out));
+ EXPECT_TRUE(out);
+
+ buf[0] = 0;
+ EXPECT_TRUE(ParseBool(value, &out));
+ EXPECT_FALSE(out);
+
+ buf[0] = 1;
+ EXPECT_FALSE(ParseBool(value, &out));
+ EXPECT_TRUE(ParseBoolRelaxed(value, &out));
+ EXPECT_TRUE(out);
+
+ buf[0] = 0xFF;
+ value = Input(buf, 2);
+ EXPECT_FALSE(ParseBool(value, &out));
+ value = Input(buf, 0);
+ EXPECT_FALSE(ParseBool(value, &out));
+}
+
+TEST(ParseValuesTest, ParseTimes) {
+ GeneralizedTime out;
+
+ EXPECT_TRUE(ParseUTCTime(FromStringLiteral("140218161200Z"), &out));
+
+ // DER-encoded UTCTime must end with 'Z'.
+ EXPECT_FALSE(ParseUTCTime(FromStringLiteral("140218161200X"), &out));
+
+ // Check that a negative number (-4 in this case) doesn't get parsed as
+ // a 2-digit number.
+ EXPECT_FALSE(ParseUTCTime(FromStringLiteral("-40218161200Z"), &out));
+
+ // Check that numbers with a leading 0 don't get parsed in octal by making
+ // the second digit an invalid octal digit (e.g. 09).
+ EXPECT_TRUE(ParseUTCTime(FromStringLiteral("090218161200Z"), &out));
+
+ // Check that the length is validated.
+ EXPECT_FALSE(ParseUTCTime(FromStringLiteral("140218161200"), &out));
+ EXPECT_FALSE(ParseUTCTime(FromStringLiteral("140218161200Z0"), &out));
+
+ // Check strictness of UTCTime parsers.
+ EXPECT_FALSE(ParseUTCTime(FromStringLiteral("1402181612Z"), &out));
+
+ // Check format of GeneralizedTime.
+
+ // Years 0 and 9999 are allowed.
+ EXPECT_TRUE(ParseGeneralizedTime(FromStringLiteral("00000101000000Z"), &out));
+ EXPECT_EQ(0, out.year);
+ EXPECT_TRUE(ParseGeneralizedTime(FromStringLiteral("99991231235960Z"), &out));
+ EXPECT_EQ(9999, out.year);
+
+ // Leap seconds are allowed.
+ EXPECT_TRUE(ParseGeneralizedTime(FromStringLiteral("20140218161260Z"), &out));
+
+ // But nothing larger than a leap second.
+ EXPECT_FALSE(
+ ParseGeneralizedTime(FromStringLiteral("20140218161261Z"), &out));
+
+ // Minutes only go up to 59.
+ EXPECT_FALSE(
+ ParseGeneralizedTime(FromStringLiteral("20140218166000Z"), &out));
+
+ // Hours only go up to 23.
+ EXPECT_FALSE(
+ ParseGeneralizedTime(FromStringLiteral("20140218240000Z"), &out));
+ // The 0th day of a month is invalid.
+ EXPECT_FALSE(
+ ParseGeneralizedTime(FromStringLiteral("20140200161200Z"), &out));
+ // The 0th month is invalid.
+ EXPECT_FALSE(
+ ParseGeneralizedTime(FromStringLiteral("20140018161200Z"), &out));
+ // Months greater than 12 are invalid.
+ EXPECT_FALSE(
+ ParseGeneralizedTime(FromStringLiteral("20141318161200Z"), &out));
+
+ // Some months have 31 days.
+ EXPECT_TRUE(ParseGeneralizedTime(FromStringLiteral("20140131000000Z"), &out));
+
+ // September has only 30 days.
+ EXPECT_FALSE(
+ ParseGeneralizedTime(FromStringLiteral("20140931000000Z"), &out));
+
+ // February has only 28 days...
+ EXPECT_FALSE(
+ ParseGeneralizedTime(FromStringLiteral("20140229000000Z"), &out));
+
+ // ... unless it's a leap year.
+ EXPECT_TRUE(ParseGeneralizedTime(FromStringLiteral("20160229000000Z"), &out));
+
+ // There aren't any leap days in years divisible by 100...
+ EXPECT_FALSE(
+ ParseGeneralizedTime(FromStringLiteral("21000229000000Z"), &out));
+
+ // ...unless it's also divisible by 400.
+ EXPECT_TRUE(ParseGeneralizedTime(FromStringLiteral("20000229000000Z"), &out));
+
+ // Check more perverse invalid inputs.
+
+ // Check that trailing null bytes are not ignored.
+ EXPECT_FALSE(
+ ParseGeneralizedTime(FromStringLiteral("20001231010203Z\0"), &out));
+
+ // Check what happens when a null byte is in the middle of the input.
+ EXPECT_FALSE(ParseGeneralizedTime(FromStringLiteral(
+ "200\0"
+ "1231010203Z"),
+ &out));
+
+ // The year can't be in hex.
+ EXPECT_FALSE(
+ ParseGeneralizedTime(FromStringLiteral("0x201231000000Z"), &out));
+
+ // The last byte must be 'Z'.
+ EXPECT_FALSE(
+ ParseGeneralizedTime(FromStringLiteral("20001231000000X"), &out));
+
+ // Check that the length is validated.
+ EXPECT_FALSE(ParseGeneralizedTime(FromStringLiteral("20140218161200"), &out));
+ EXPECT_FALSE(
+ ParseGeneralizedTime(FromStringLiteral("20140218161200Z0"), &out));
+}
+
+TEST(ParseValuesTest, TimesCompare) {
+ GeneralizedTime time1;
+ GeneralizedTime time2;
+ GeneralizedTime time3;
+
+ ASSERT_TRUE(
+ ParseGeneralizedTime(FromStringLiteral("20140218161200Z"), &time1));
+ // Test that ParseUTCTime correctly normalizes the year.
+ ASSERT_TRUE(ParseUTCTime(FromStringLiteral("150218161200Z"), &time2));
+ ASSERT_TRUE(
+ ParseGeneralizedTime(FromStringLiteral("20160218161200Z"), &time3));
+ EXPECT_TRUE(time1 < time2);
+ EXPECT_TRUE(time2 < time3);
+
+ EXPECT_TRUE(time2 > time1);
+ EXPECT_TRUE(time2 >= time1);
+ EXPECT_TRUE(time2 <= time3);
+ EXPECT_TRUE(time1 <= time1);
+ EXPECT_TRUE(time1 >= time1);
+}
+
+TEST(ParseValuesTest, UTCTimeRange) {
+ GeneralizedTime time;
+ ASSERT_TRUE(
+ ParseGeneralizedTime(FromStringLiteral("20140218161200Z"), &time));
+ EXPECT_TRUE(time.InUTCTimeRange());
+
+ time.year = 1950;
+ EXPECT_TRUE(time.InUTCTimeRange());
+
+ time.year = 1949;
+ EXPECT_FALSE(time.InUTCTimeRange());
+
+ time.year = 2049;
+ EXPECT_TRUE(time.InUTCTimeRange());
+
+ time.year = 2050;
+ EXPECT_FALSE(time.InUTCTimeRange());
+}
+
+struct Uint64TestData {
+ bool should_pass;
+ const uint8_t input[9];
+ size_t length;
+ uint64_t expected_value;
+};
+
+const Uint64TestData kUint64TestData[] = {
+ {true, {0x00}, 1, 0},
+ // This number fails because it is not a minimal representation.
+ {false, {0x00, 0x00}, 2},
+ {true, {0x01}, 1, 1},
+ {false, {0xFF}, 1},
+ {true, {0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}, 8, INT64_MAX},
+ {true,
+ {0x00, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF},
+ 9,
+ UINT64_MAX},
+ // This number fails because it is negative.
+ {false, {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF}, 8},
+ {false, {0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, 8},
+ {false, {0x00, 0x01}, 2},
+ {false, {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09}, 9},
+ {false, {0}, 0},
+};
+
+TEST(ParseValuesTest, ParseUint64) {
+ for (size_t i = 0; i < std::size(kUint64TestData); i++) {
+ const Uint64TestData& test_case = kUint64TestData[i];
+ SCOPED_TRACE(i);
+
+ uint64_t result;
+ EXPECT_EQ(test_case.should_pass,
+ ParseUint64(Input(test_case.input, test_case.length), &result));
+ if (test_case.should_pass) {
+ EXPECT_EQ(test_case.expected_value, result);
+ }
+ }
+}
+
+struct Uint8TestData {
+ bool should_pass;
+ const uint8_t input[9];
+ size_t length;
+ uint8_t expected_value;
+};
+
+const Uint8TestData kUint8TestData[] = {
+ {true, {0x00}, 1, 0},
+ // This number fails because it is not a minimal representation.
+ {false, {0x00, 0x00}, 2},
+ {true, {0x01}, 1, 1},
+ {false, {0x01, 0xFF}, 2},
+ {false, {0x03, 0x83}, 2},
+ {true, {0x7F}, 1, 0x7F},
+ {true, {0x00, 0xFF}, 2, 0xFF},
+ // This number fails because it is negative.
+ {false, {0xFF}, 1},
+ {false, {0x80}, 1},
+ {false, {0x00, 0x01}, 2},
+ {false, {0}, 0},
+};
+
+TEST(ParseValuesTest, ParseUint8) {
+ for (size_t i = 0; i < std::size(kUint8TestData); i++) {
+ const Uint8TestData& test_case = kUint8TestData[i];
+ SCOPED_TRACE(i);
+
+ uint8_t result;
+ EXPECT_EQ(test_case.should_pass,
+ ParseUint8(Input(test_case.input, test_case.length), &result));
+ if (test_case.should_pass) {
+ EXPECT_EQ(test_case.expected_value, result);
+ }
+ }
+}
+
+struct IsValidIntegerTestData {
+ bool should_pass;
+ const uint8_t input[2];
+ size_t length;
+ bool negative;
+};
+
+const IsValidIntegerTestData kIsValidIntegerTestData[] = {
+ // Empty input (invalid DER).
+ {false, {0x00}, 0},
+
+ // The correct encoding for zero.
+ {true, {0x00}, 1, false},
+
+ // Invalid representation of zero (not minimal)
+ {false, {0x00, 0x00}, 2},
+
+ // Valid single byte negative numbers.
+ {true, {0x80}, 1, true},
+ {true, {0xFF}, 1, true},
+
+ // Non-minimal negative number.
+ {false, {0xFF, 0x80}, 2},
+
+ // Positive number with a legitimate leading zero.
+ {true, {0x00, 0x80}, 2, false},
+
+ // A legitimate negative number that starts with FF (MSB of second byte is
+ // 0 so OK).
+ {true, {0xFF, 0x7F}, 2, true},
+};
+
+TEST(ParseValuesTest, IsValidInteger) {
+ for (size_t i = 0; i < std::size(kIsValidIntegerTestData); i++) {
+ const auto& test_case = kIsValidIntegerTestData[i];
+ SCOPED_TRACE(i);
+
+ bool negative;
+ EXPECT_EQ(
+ test_case.should_pass,
+ IsValidInteger(Input(test_case.input, test_case.length), &negative));
+ if (test_case.should_pass) {
+ EXPECT_EQ(test_case.negative, negative);
+ }
+ }
+}
+
+// Tests parsing an empty BIT STRING.
+TEST(ParseValuesTest, ParseBitStringEmptyNoUnusedBits) {
+ const uint8_t kData[] = {0x00};
+
+ std::optional<BitString> bit_string = ParseBitString(Input(kData));
+ ASSERT_TRUE(bit_string.has_value());
+
+ EXPECT_EQ(0u, bit_string->unused_bits());
+ EXPECT_EQ(0u, bit_string->bytes().Length());
+
+ EXPECT_FALSE(bit_string->AssertsBit(0));
+ EXPECT_FALSE(bit_string->AssertsBit(1));
+ EXPECT_FALSE(bit_string->AssertsBit(3));
+}
+
+// Tests parsing an empty BIT STRING that incorrectly claims one unused bit.
+TEST(ParseValuesTest, ParseBitStringEmptyOneUnusedBit) {
+ const uint8_t kData[] = {0x01};
+
+ std::optional<BitString> bit_string = ParseBitString(Input(kData));
+ EXPECT_FALSE(bit_string.has_value());
+}
+
+// Tests parsing an empty BIT STRING that is not minmally encoded (the entire
+// last byte is comprised of unused bits).
+TEST(ParseValuesTest, ParseBitStringNonEmptyTooManyUnusedBits) {
+ const uint8_t kData[] = {0x08, 0x00};
+
+ std::optional<BitString> bit_string = ParseBitString(Input(kData));
+ EXPECT_FALSE(bit_string.has_value());
+}
+
+// Tests parsing a BIT STRING of 7 bits each of which are 1.
+TEST(ParseValuesTest, ParseBitStringSevenOneBits) {
+ const uint8_t kData[] = {0x01, 0xFE};
+
+ std::optional<BitString> bit_string = ParseBitString(Input(kData));
+ ASSERT_TRUE(bit_string.has_value());
+
+ EXPECT_EQ(1u, bit_string->unused_bits());
+ EXPECT_EQ(1u, bit_string->bytes().Length());
+ EXPECT_EQ(0xFE, bit_string->bytes().UnsafeData()[0]);
+
+ EXPECT_TRUE(bit_string->AssertsBit(0));
+ EXPECT_TRUE(bit_string->AssertsBit(1));
+ EXPECT_TRUE(bit_string->AssertsBit(2));
+ EXPECT_TRUE(bit_string->AssertsBit(3));
+ EXPECT_TRUE(bit_string->AssertsBit(4));
+ EXPECT_TRUE(bit_string->AssertsBit(5));
+ EXPECT_TRUE(bit_string->AssertsBit(6));
+ EXPECT_FALSE(bit_string->AssertsBit(7));
+ EXPECT_FALSE(bit_string->AssertsBit(8));
+}
+
+// Tests parsing a BIT STRING of 7 bits each of which are 1. The unused bit
+// however is set to 1, which is an invalid encoding.
+TEST(ParseValuesTest, ParseBitStringSevenOneBitsUnusedBitIsOne) {
+ const uint8_t kData[] = {0x01, 0xFF};
+
+ std::optional<BitString> bit_string = ParseBitString(Input(kData));
+ EXPECT_FALSE(bit_string.has_value());
+}
+
+TEST(ParseValuesTest, ParseIA5String) {
+ const uint8_t valid_der[] = {0x46, 0x6f, 0x6f, 0x20, 0x62,
+ 0x61, 0x72, 0x01, 0x7f};
+ std::string s;
+ EXPECT_TRUE(ParseIA5String(der::Input(valid_der), &s));
+ EXPECT_EQ("Foo bar\x01\x7f", s);
+
+ // 0x80 is not a valid character in IA5String.
+ const uint8_t invalid_der[] = {0x46, 0x6f, 0x80, 0x20, 0x62, 0x61, 0x72};
+ EXPECT_FALSE(ParseIA5String(der::Input(invalid_der), &s));
+}
+
+TEST(ParseValuesTest, ParseVisibleString) {
+ const uint8_t valid_der[] = {0x46, 0x6f, 0x6f, 0x20, 0x62, 0x61, 0x72, 0x7e};
+ std::string s;
+ EXPECT_TRUE(ParseVisibleString(der::Input(valid_der), &s));
+ EXPECT_EQ("Foo bar\x7e", s);
+
+ // 0x7f is not a valid character in VisibleString
+ const uint8_t invalid_der[] = {0x46, 0x6f, 0x7f, 0x20, 0x62, 0x61, 0x72};
+ EXPECT_FALSE(ParseVisibleString(der::Input(invalid_der), &s));
+
+ // 0x1f is not a valid character in VisibleString
+ const uint8_t invalid_der2[] = {0x46, 0x6f, 0x1f, 0x20, 0x62, 0x61, 0x72};
+ EXPECT_FALSE(ParseVisibleString(der::Input(invalid_der2), &s));
+}
+
+TEST(ParseValuesTest, ParsePrintableString) {
+ const uint8_t valid_der[] = {0x46, 0x6f, 0x6f, 0x20, 0x62, 0x61, 0x72};
+ std::string s;
+ EXPECT_TRUE(ParsePrintableString(der::Input(valid_der), &s));
+ EXPECT_EQ("Foo bar", s);
+
+ // 0x5f '_' is not a valid character in PrintableString.
+ const uint8_t invalid_der[] = {0x46, 0x6f, 0x5f, 0x20, 0x62, 0x61, 0x72};
+ EXPECT_FALSE(ParsePrintableString(der::Input(invalid_der), &s));
+}
+
+TEST(ParseValuesTest, ParseTeletexStringAsLatin1) {
+ const uint8_t valid_der[] = {0x46, 0x6f, 0xd6, 0x20, 0x62, 0x61, 0x72};
+ std::string s;
+ EXPECT_TRUE(ParseTeletexStringAsLatin1(der::Input(valid_der), &s));
+ EXPECT_EQ("FoÖ bar", s);
+}
+
+TEST(ParseValuesTest, ParseBmpString) {
+ const uint8_t valid_der[] = {0x00, 0x66, 0x00, 0x6f, 0x00, 0x6f,
+ 0x00, 0x62, 0x00, 0x61, 0x00, 0x72};
+ std::string s;
+ EXPECT_TRUE(ParseBmpString(der::Input(valid_der), &s));
+ EXPECT_EQ("foobar", s);
+
+ const uint8_t valid_nonascii_der[] = {0x27, 0x28, 0x26, 0xa1, 0x2b, 0x50};
+ EXPECT_TRUE(ParseBmpString(der::Input(valid_nonascii_der), &s));
+ EXPECT_EQ("โจโกโญ", s);
+
+ // BmpString must encode characters in pairs of 2 bytes.
+ const uint8_t invalid_odd_der[] = {0x00, 0x66, 0x00, 0x6f, 0x00};
+ EXPECT_FALSE(ParseBmpString(der::Input(invalid_odd_der), &s));
+
+ // UTF-16BE encoding of U+1D11E, MUSICAL SYMBOL G CLEF, which is not valid in
+ // UCS-2.
+ const uint8_t invalid_bmp_valid_utf16_with_surrogate[] = {0xd8, 0x34, 0xdd,
+ 0x1e};
+ EXPECT_FALSE(
+ ParseBmpString(der::Input(invalid_bmp_valid_utf16_with_surrogate), &s));
+}
+
+TEST(ParseValuesTest, ParseUniversalString) {
+ const uint8_t valid_der[] = {0x00, 0x00, 0x00, 0x66, 0x00, 0x00, 0x00, 0x6f,
+ 0x00, 0x00, 0x00, 0x6f, 0x00, 0x00, 0x00, 0x62,
+ 0x00, 0x00, 0x00, 0x61, 0x00, 0x00, 0x00, 0x72};
+ std::string s;
+ EXPECT_TRUE(ParseUniversalString(der::Input(valid_der), &s));
+ EXPECT_EQ("foobar", s);
+
+ const uint8_t valid_non_ascii_der[] = {0x0, 0x1, 0xf4, 0xe, 0x0, 0x0, 0x0,
+ 0x20, 0x0, 0x1, 0xd1, 0x1e, 0x0, 0x0,
+ 0x26, 0x69, 0x0, 0x0, 0x26, 0x6b};
+ EXPECT_TRUE(ParseUniversalString(der::Input(valid_non_ascii_der), &s));
+ EXPECT_EQ("๐ ๐โฉโซ", s);
+
+ // UniversalString must encode characters in groups of 4 bytes.
+ const uint8_t invalid_non_4_multiple_der[] = {0x00, 0x00, 0x00,
+ 0x66, 0x00, 0x00};
+ EXPECT_FALSE(
+ ParseUniversalString(der::Input(invalid_non_4_multiple_der), &s));
+}
+
+} // namespace bssl::der::test