Guard against DoS in name constraints handling.

This guards against the name constraints check consuming large amounts
of CPU time when certificates in the presented chain contain an
excessive number of names (specifically subject email names or subject
alternative DNS names) and/or name constraints.

Name constraints checking compares the names presented in a certificate
against the name constraints included in a certificate higher up in the
chain using two nested for loops.

Move the name constraints check so that it happens after signature
verification so peers cannot exploit this using a chain with invalid
signatures. Also impose a hard limit on the number of name constraints
check loop iterations to further mitigate the issue.

Thanks to NCC for finding this issue.

Change-Id: I112ba76fe75d1579c45291042e448850b830cbb7
Reviewed-on: https://boringssl-review.googlesource.com/19164
Reviewed-by: Martin Kreichgauer <martinkr@google.com>
Commit-Queue: Martin Kreichgauer <martinkr@google.com>
CQ-Verified: CQ bot account: commit-bot@chromium.org <commit-bot@chromium.org>
2 files changed
tree: b9f378b637b9dfbb1e8d80317f310dc415e80ad4
  1. .github/
  2. crypto/
  3. decrepit/
  4. fipstools/
  5. fuzz/
  6. include/
  7. infra/
  8. ssl/
  9. third_party/
  10. tool/
  11. util/
  12. .clang-format
  13. .gitignore
  14. API-CONVENTIONS.md
  15. BUILDING.md
  16. CMakeLists.txt
  17. codereview.settings
  18. CONTRIBUTING.md
  19. FUZZING.md
  20. INCORPORATING.md
  21. LICENSE
  22. PORTING.md
  23. README.md
  24. sources.cmake
  25. STYLE.md
README.md

BoringSSL

BoringSSL is a fork of OpenSSL that is designed to meet Google's needs.

Although BoringSSL is an open source project, it is not intended for general use, as OpenSSL is. We don't recommend that third parties depend upon it. Doing so is likely to be frustrating because there are no guarantees of API or ABI stability.

Programs ship their own copies of BoringSSL when they use it and we update everything as needed when deciding to make API changes. This allows us to mostly avoid compromises in the name of compatibility. It works for us, but it may not work for you.

BoringSSL arose because Google used OpenSSL for many years in various ways and, over time, built up a large number of patches that were maintained while tracking upstream OpenSSL. As Google's product portfolio became more complex, more copies of OpenSSL sprung up and the effort involved in maintaining all these patches in multiple places was growing steadily.

Currently BoringSSL is the SSL library in Chrome/Chromium, Android (but it's not part of the NDK) and a number of other apps/programs.

There are other files in this directory which might be helpful: