Simplify ec_GFp_simple_points_make_affine.

Replace the tree-like structure by a linear approach, with fewer special
cases to handle value 0.

(Imported from upstream's d5213519c0ed87c71136084e7e843a4125ecc024.)

Change-Id: Icdd4815066bdbab0d2c0020db6a8cacc49b3d82a
Reviewed-on: https://boringssl-review.googlesource.com/1400
Reviewed-by: Adam Langley <agl@google.com>
diff --git a/crypto/ec/simple.c b/crypto/ec/simple.c
index c62deb0..2c85746 100644
--- a/crypto/ec/simple.c
+++ b/crypto/ec/simple.c
@@ -1195,159 +1195,135 @@
 int ec_GFp_simple_points_make_affine(const EC_GROUP *group, size_t num,
                                      EC_POINT *points[], BN_CTX *ctx) {
   BN_CTX *new_ctx = NULL;
-  BIGNUM *tmp0, *tmp1;
-  size_t pow2 = 0;
-  BIGNUM **heap = NULL;
+  BIGNUM *tmp, *tmp_Z;
+  BIGNUM **prod_Z = NULL;
   size_t i;
   int ret = 0;
 
-  if (num == 0)
+  if (num == 0) {
     return 1;
+  }
 
   if (ctx == NULL) {
     ctx = new_ctx = BN_CTX_new();
-    if (ctx == NULL)
+    if (ctx == NULL) {
       return 0;
+    }
   }
 
   BN_CTX_start(ctx);
-  tmp0 = BN_CTX_get(ctx);
-  tmp1 = BN_CTX_get(ctx);
-  if (tmp0 == NULL || tmp1 == NULL)
+  tmp = BN_CTX_get(ctx);
+  tmp_Z = BN_CTX_get(ctx);
+  if (tmp == NULL || tmp_Z == NULL) {
     goto err;
+  }
 
-  /* Before converting the individual points, compute inverses of all Z values.
-   * Modular inversion is rather slow, but luckily we can do with a single
-   * explicit inversion, plus about 3 multiplications per input value.
-   */
-
-  pow2 = 1;
-  while (num > pow2)
-    pow2 <<= 1;
-  /* Now pow2 is the smallest power of 2 satifsying pow2 >= num.
-   * We need twice that. */
-  pow2 <<= 1;
-
-  heap = OPENSSL_malloc(pow2 * sizeof heap[0]);
-  if (heap == NULL)
+  prod_Z = OPENSSL_malloc(num * sizeof(prod_Z[0]));
+  if (prod_Z == NULL) {
     goto err;
-
-  /* TODO(bmoeller): There is no reason to use this tree structure.
-   * We should instead proceed sequentially, exactly as in
-   * ec_GFp_nistp_points_make_affine_internal, which makes everything
-   * much simpler. */
-
-  /* The array is used as a binary tree, exactly as in heapsort:
-   *
-   *                               heap[1]
-   *                 heap[2]                     heap[3]
-   *          heap[4]       heap[5]       heap[6]       heap[7]
-   *   heap[8]heap[9] heap[10]heap[11] heap[12]heap[13] heap[14] heap[15]
-   *
-   * We put the Z's in the last line;
-   * then we set each other node to the product of its two child-nodes (where
-   * empty or 0 entries are treated as ones);
-   * then we invert heap[1];
-   * then we invert each other node by replacing it by the product of its
-   * parent (after inversion) and its sibling (before inversion).
-   */
-  heap[0] = NULL;
-  for (i = pow2 / 2 - 1; i > 0; i--)
-    heap[i] = NULL;
-  for (i = 0; i < num; i++)
-    heap[pow2 / 2 + i] = &points[i]->Z;
-  for (i = pow2 / 2 + num; i < pow2; i++)
-    heap[i] = NULL;
-
-  /* set each node to the product of its children */
-  for (i = pow2 / 2 - 1; i > 0; i--) {
-    heap[i] = BN_new();
-    if (heap[i] == NULL)
-      goto err;
-
-    if (heap[2 * i] != NULL) {
-      if ((heap[2 * i + 1] == NULL) || BN_is_zero(heap[2 * i + 1])) {
-        if (!BN_copy(heap[i], heap[2 * i]))
-          goto err;
-      } else {
-        if (BN_is_zero(heap[2 * i])) {
-          if (!BN_copy(heap[i], heap[2 * i + 1]))
-            goto err;
-        } else {
-          if (!group->meth->field_mul(group, heap[i], heap[2 * i],
-                                      heap[2 * i + 1], ctx))
-            goto err;
-        }
-      }
-    }
   }
-
-  /* invert heap[1] */
-  if (!BN_is_zero(heap[1])) {
-    if (!BN_mod_inverse(heap[1], heap[1], &group->field, ctx)) {
-      OPENSSL_PUT_ERROR(EC, ec_GFp_simple_points_make_affine, ERR_R_BN_LIB);
-      goto err;
-    }
-  }
-  if (group->meth->field_encode != 0) {
-    /* in the Montgomery case, we just turned  R*H  (representing H)
-     * into  1/(R*H),  but we need  R*(1/H)  (representing 1/H);
-     * i.e. we have need to multiply by the Montgomery factor twice */
-    if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) {
-      goto err;
-    }
-    if (!group->meth->field_encode(group, heap[1], heap[1], ctx)) {
+  memset(prod_Z, 0, num * sizeof(prod_Z[0]));
+  for (i = 0; i < num; i++) {
+    prod_Z[i] = BN_new();
+    if (prod_Z[i] == NULL) {
       goto err;
     }
   }
 
-  /* set other heap[i]'s to their inverses */
-  for (i = 2; i < pow2 / 2 + num; i += 2) {
-    /* i is even */
-    if ((heap[i + 1] != NULL) && !BN_is_zero(heap[i + 1])) {
-      if (!BN_is_zero(heap[i])) {
-        if (!group->meth->field_mul(group, tmp0, heap[i / 2], heap[i + 1], ctx))
-          goto err;
-        if (!group->meth->field_mul(group, tmp1, heap[i / 2], heap[i], ctx))
-          goto err;
-        if (!BN_copy(heap[i], tmp0))
-          goto err;
-        if (!BN_copy(heap[i + 1], tmp1))
-          goto err;
-      } else {
-        if (!BN_copy(heap[i + 1], heap[i / 2]))
-          goto err;
+  /* Set each prod_Z[i] to the product of points[0]->Z .. points[i]->Z,
+   * skipping any zero-valued inputs (pretend that they're 1). */
+
+  if (!BN_is_zero(&points[0]->Z)) {
+    if (!BN_copy(prod_Z[0], &points[0]->Z)) {
+      goto err;
+    }
+  } else {
+    if (group->meth->field_set_to_one != 0) {
+      if (!group->meth->field_set_to_one(group, prod_Z[0], ctx)) {
+        goto err;
       }
     } else {
-      if (!BN_copy(heap[i], heap[i / 2]))
+      if (!BN_one(prod_Z[0])) {
         goto err;
+      }
     }
   }
 
-  /* we have replaced all non-zero Z's by their inverses, now fix up all the
-   * points */
+  for (i = 1; i < num; i++) {
+    if (!BN_is_zero(&points[i]->Z)) {
+      if (!group->meth->field_mul(group, prod_Z[i], prod_Z[i - 1],
+                                  &points[i]->Z, ctx)) {
+        goto err;
+      }
+    } else {
+      if (!BN_copy(prod_Z[i], prod_Z[i - 1])) {
+        goto err;
+      }
+    }
+  }
+
+  /* Now use a single explicit inversion to replace every
+   * non-zero points[i]->Z by its inverse. */
+
+  if (!BN_mod_inverse(tmp, prod_Z[num - 1], &group->field, ctx)) {
+    OPENSSL_PUT_ERROR(EC, ec_GFp_simple_points_make_affine, ERR_R_BN_LIB);
+    goto err;
+  }
+
+  if (group->meth->field_encode != NULL) {
+    /* In the Montgomery case, we just turned R*H (representing H)
+     * into 1/(R*H), but we need R*(1/H) (representing 1/H);
+     * i.e. we need to multiply by the Montgomery factor twice. */
+    if (!group->meth->field_encode(group, tmp, tmp, ctx) ||
+        !group->meth->field_encode(group, tmp, tmp, ctx)) {
+      goto err;
+    }
+  }
+
+  for (i = num - 1; i > 0; --i) {
+    /* Loop invariant: tmp is the product of the inverses of
+     * points[0]->Z .. points[i]->Z (zero-valued inputs skipped). */
+    if (BN_is_zero(&points[i]->Z)) {
+      continue;
+    }
+
+    /* Set tmp_Z to the inverse of points[i]->Z (as product
+     * of Z inverses 0 .. i, Z values 0 .. i - 1). */
+    if (!group->meth->field_mul(group, tmp_Z, prod_Z[i - 1], tmp, ctx) ||
+        /* Update tmp to satisfy the loop invariant for i - 1. */
+        !group->meth->field_mul(group, tmp, tmp, &points[i]->Z, ctx) ||
+        /* Replace points[i]->Z by its inverse. */
+        !BN_copy(&points[i]->Z, tmp_Z)) {
+      goto err;
+    }
+  }
+
+  /* Replace points[0]->Z by its inverse. */
+  if (!BN_is_zero(&points[0]->Z) && !BN_copy(&points[0]->Z, tmp)) {
+    goto err;
+  }
+
+  /* Finally, fix up the X and Y coordinates for all points. */
   for (i = 0; i < num; i++) {
     EC_POINT *p = points[i];
 
     if (!BN_is_zero(&p->Z)) {
-      /* turn  (X, Y, 1/Z)  into  (X/Z^2, Y/Z^3, 1) */
+      /* turn (X, Y, 1/Z) into (X/Z^2, Y/Z^3, 1). */
+      if (!group->meth->field_sqr(group, tmp, &p->Z, ctx) ||
+          !group->meth->field_mul(group, &p->X, &p->X, tmp, ctx) ||
+          !group->meth->field_mul(group, tmp, tmp, &p->Z, ctx) ||
+          !group->meth->field_mul(group, &p->Y, &p->Y, tmp, ctx)) {
+        goto err;
+      }
 
-      if (!group->meth->field_sqr(group, tmp1, &p->Z, ctx))
-        goto err;
-      if (!group->meth->field_mul(group, &p->X, &p->X, tmp1, ctx))
-        goto err;
-
-      if (!group->meth->field_mul(group, tmp1, tmp1, &p->Z, ctx))
-        goto err;
-      if (!group->meth->field_mul(group, &p->Y, &p->Y, tmp1, ctx))
-        goto err;
-
-      if (group->meth->field_set_to_one != 0) {
-        if (!group->meth->field_set_to_one(group, &p->Z, ctx))
+      if (group->meth->field_set_to_one != NULL) {
+        if (!group->meth->field_set_to_one(group, &p->Z, ctx)) {
           goto err;
+        }
       } else {
-        if (!BN_one(&p->Z))
+        if (!BN_one(&p->Z)) {
           goto err;
+        }
       }
       p->Z_is_one = 1;
     }
@@ -1357,16 +1333,18 @@
 
 err:
   BN_CTX_end(ctx);
-  if (new_ctx != NULL)
+  if (new_ctx != NULL) {
     BN_CTX_free(new_ctx);
-  if (heap != NULL) {
-    /* heap[pow2/2] .. heap[pow2-1] have not been allocated locally! */
-    for (i = pow2 / 2 - 1; i > 0; i--) {
-      if (heap[i] != NULL)
-        BN_clear_free(heap[i]);
-    }
-    OPENSSL_free(heap);
   }
+  if (prod_Z != NULL) {
+    for (i = 0; i < num; i++) {
+      if (prod_Z[i] != NULL) {
+        BN_clear_free(prod_Z[i]);
+      }
+    }
+    OPENSSL_free(prod_Z);
+  }
+
   return ret;
 }