Use only Montgomery math in |ec_GFp_mont_point_get_affine_coordinates|.
Use only Montgomery math in |ec_GFp_mont_point_get_affine_coordinates|.
In particular, avoid |BN_mod_sqr| and |BN_mod_mul|.
Change-Id: I05c8f831d2865d1b105cda3871e9ae67083f8399
Reviewed-on: https://boringssl-review.googlesource.com/7586
Reviewed-by: David Benjamin <davidben@google.com>
diff --git a/crypto/ec/ec_montgomery.c b/crypto/ec/ec_montgomery.c
index 30898ae..35df365 100644
--- a/crypto/ec/ec_montgomery.c
+++ b/crypto/ec/ec_montgomery.c
@@ -219,15 +219,12 @@
const EC_POINT *point,
BIGNUM *x, BIGNUM *y,
BN_CTX *ctx) {
- BN_CTX *new_ctx = NULL;
- BIGNUM *Z, *Z_1, *Z_2, *Z_3;
- int ret = 0;
-
if (EC_POINT_is_at_infinity(group, point)) {
OPENSSL_PUT_ERROR(EC, EC_R_POINT_AT_INFINITY);
return 0;
}
+ BN_CTX *new_ctx = NULL;
if (ctx == NULL) {
ctx = new_ctx = BN_CTX_new();
if (ctx == NULL) {
@@ -235,52 +232,65 @@
}
}
+ int ret = 0;
+
BN_CTX_start(ctx);
- Z = BN_CTX_get(ctx);
- Z_1 = BN_CTX_get(ctx);
- Z_2 = BN_CTX_get(ctx);
- Z_3 = BN_CTX_get(ctx);
- if (Z == NULL || Z_1 == NULL || Z_2 == NULL || Z_3 == NULL) {
- goto err;
- }
- /* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */
-
- if (!group->meth->field_decode(group, Z, &point->Z, ctx)) {
- goto err;
- }
-
- if (BN_is_one(Z)) {
- if (x != NULL && !group->meth->field_decode(group, x, &point->X, ctx)) {
+ if (BN_cmp(&point->Z, &group->one) == 0) {
+ /* |point| is already affine. */
+ if (x != NULL && !BN_from_montgomery(x, &point->X, group->mont, ctx)) {
goto err;
}
- if (y != NULL && !group->meth->field_decode(group, y, &point->Y, ctx)) {
+ if (y != NULL && !BN_from_montgomery(y, &point->Y, group->mont, ctx)) {
goto err;
}
} else {
- if (!BN_mod_inverse(Z_1, Z, &group->field, ctx)) {
- OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
+ /* transform (X, Y, Z) into (x, y) := (X/Z^2, Y/Z^3) */
+
+ BIGNUM *Z_1 = BN_CTX_get(ctx);
+ BIGNUM *Z_2 = BN_CTX_get(ctx);
+ BIGNUM *Z_3 = BN_CTX_get(ctx);
+ if (Z_1 == NULL ||
+ Z_2 == NULL ||
+ Z_3 == NULL) {
goto err;
}
- if (!BN_mod_sqr(Z_2, Z_1, &group->field, ctx)) {
+ /* The straightforward way to calculate the inverse of a Montgomery-encoded
+ * value where the result is Montgomery-encoded is:
+ *
+ * |BN_from_montgomery| + |BN_mod_inverse| + |BN_to_montgomery|.
+ *
+ * This is equivalent, but more efficient, because |BN_from_montgomery|
+ * is more efficient (at least in theory) than |BN_to_montgomery|, since it
+ * doesn't have to do the multiplication before the reduction. */
+ if (!BN_from_montgomery(Z_1, &point->Z, group->mont, ctx) ||
+ !BN_from_montgomery(Z_1, Z_1, group->mont, ctx) ||
+ !BN_mod_inverse(Z_1, Z_1, &group->field, ctx)) {
goto err;
}
- /* in the Montgomery case, field_mul will cancel out Montgomery factor in
- * X: */
- if (x != NULL && !group->meth->field_mul(group, x, &point->X, Z_2, ctx)) {
+ if (!BN_mod_mul_montgomery(Z_2, Z_1, Z_1, group->mont, ctx)) {
goto err;
}
+ /* Instead of using |BN_from_montgomery| to convert the |x| coordinate
+ * and then calling |BN_from_montgomery| again to convert the |y|
+ * coordinate below, convert the common factor |Z_2| once now, saving one
+ * reduction. */
+ if (!BN_from_montgomery(Z_2, Z_2, group->mont, ctx)) {
+ goto err;
+ }
+
+ if (x != NULL) {
+ if (!BN_mod_mul_montgomery(x, &point->X, Z_2, group->mont, ctx)) {
+ goto err;
+ }
+ }
+
if (y != NULL) {
- if (!BN_mod_mul(Z_3, Z_2, Z_1, &group->field, ctx)) {
- goto err;
- }
-
- /* in the Montgomery case, field_mul will cancel out Montgomery factor in
- * Y: */
- if (!group->meth->field_mul(group, y, &point->Y, Z_3, ctx)) {
+ if (!BN_mod_mul_montgomery(Z_3, Z_2, Z_1, group->mont, ctx) ||
+ !BN_mod_mul_montgomery(y, &point->Y, Z_3, group->mont, ctx)) {
goto err;
}
}