Drop CECPQ2b code.

The experiment which motivated CECPQ2b has concluded (although the
results haven't been published yet) and the SIKE code is causing some
issues for gRPC in gprc/grpc#20100. Also, this is code size that takes
up space in Android etc.

Change-Id: I43b0b8c420f236c0fe9b40bf2517d2fde98495d5
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/38384
Reviewed-by: David Benjamin <davidben@google.com>
Commit-Queue: David Benjamin <davidben@google.com>
diff --git a/ssl/s3_both.cc b/ssl/s3_both.cc
index 58f0f8a..1ec596a 100644
--- a/ssl/s3_both.cc
+++ b/ssl/s3_both.cc
@@ -660,8 +660,7 @@
  public:
   CipherScorer(uint16_t group_id)
       : aes_is_fine_(EVP_has_aes_hardware()),
-        security_128_is_fine_(group_id != SSL_CURVE_CECPQ2 &&
-                              group_id != SSL_CURVE_CECPQ2b) {}
+        security_128_is_fine_(group_id != SSL_CURVE_CECPQ2) {}
 
   typedef std::tuple<bool, bool, bool> Score;
 
diff --git a/ssl/ssl_key_share.cc b/ssl/ssl_key_share.cc
index 826fb1a..6cac3cf 100644
--- a/ssl/ssl_key_share.cc
+++ b/ssl/ssl_key_share.cc
@@ -31,7 +31,6 @@
 
 #include "internal.h"
 #include "../crypto/internal.h"
-#include "../third_party/sike/sike.h"
 
 BSSL_NAMESPACE_BEGIN
 
@@ -300,87 +299,6 @@
   HRSS_private_key hrss_private_key_;
 };
 
-class CECPQ2bKeyShare : public SSLKeyShare {
- public:
-  uint16_t GroupID() const override { return SSL_CURVE_CECPQ2b; }
-
-  bool Offer(CBB *out) override {
-    uint8_t public_x25519[32] = {0};
-    X25519_keypair(public_x25519, private_x25519_);
-    if (!SIKE_keypair(private_sike_, public_sike_)) {
-      return false;
-    }
-
-    return CBB_add_bytes(out, public_x25519, sizeof(public_x25519)) &&
-           CBB_add_bytes(out, public_sike_, sizeof(public_sike_));
-  }
-
-  bool Accept(CBB *out_public_key, Array<uint8_t> *out_secret,
-              uint8_t *out_alert, Span<const uint8_t> peer_key) override {
-    uint8_t public_x25519[32];
-    uint8_t private_x25519[32];
-    uint8_t sike_ciphertext[SIKE_CT_BYTESZ] = {0};
-
-    *out_alert = SSL_AD_INTERNAL_ERROR;
-
-    if (peer_key.size() != sizeof(public_x25519) + SIKE_PUB_BYTESZ) {
-      *out_alert = SSL_AD_DECODE_ERROR;
-      OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ECPOINT);
-      return false;
-    }
-
-    Array<uint8_t> secret;
-    if (!secret.Init(sizeof(private_x25519_) + SIKE_SS_BYTESZ)) {
-      OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
-      return false;
-    }
-
-    X25519_keypair(public_x25519, private_x25519);
-    if (!X25519(secret.data(), private_x25519, peer_key.data())) {
-      *out_alert = SSL_AD_DECODE_ERROR;
-      OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ECPOINT);
-      return false;
-    }
-
-    SIKE_encaps(secret.data() + sizeof(private_x25519_), sike_ciphertext,
-                peer_key.data() + sizeof(public_x25519));
-    *out_secret = std::move(secret);
-
-    return CBB_add_bytes(out_public_key, public_x25519,
-                         sizeof(public_x25519)) &&
-           CBB_add_bytes(out_public_key, sike_ciphertext,
-                         sizeof(sike_ciphertext));
-  }
-
-  bool Finish(Array<uint8_t> *out_secret, uint8_t *out_alert,
-              Span<const uint8_t> peer_key) override {
-    *out_alert = SSL_AD_INTERNAL_ERROR;
-
-    Array<uint8_t> secret;
-    if (!secret.Init(sizeof(private_x25519_) + SIKE_SS_BYTESZ)) {
-      OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
-      return false;
-    }
-
-    if (peer_key.size() != 32 + SIKE_CT_BYTESZ ||
-        !X25519(secret.data(), private_x25519_, peer_key.data())) {
-      *out_alert = SSL_AD_DECODE_ERROR;
-      OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ECPOINT);
-      return false;
-    }
-
-    SIKE_decaps(secret.data() + sizeof(private_x25519_), peer_key.data() + 32,
-                public_sike_, private_sike_);
-    *out_secret = std::move(secret);
-    return true;
-  }
-
- private:
-  uint8_t private_x25519_[32];
-  uint8_t private_sike_[SIKE_PRV_BYTESZ];
-  uint8_t public_sike_[SIKE_PUB_BYTESZ];
-};
-
 CONSTEXPR_ARRAY NamedGroup kNamedGroups[] = {
     {NID_secp224r1, SSL_CURVE_SECP224R1, "P-224", "secp224r1"},
     {NID_X9_62_prime256v1, SSL_CURVE_SECP256R1, "P-256", "prime256v1"},
@@ -388,7 +306,6 @@
     {NID_secp521r1, SSL_CURVE_SECP521R1, "P-521", "secp521r1"},
     {NID_X25519, SSL_CURVE_X25519, "X25519", "x25519"},
     {NID_CECPQ2, SSL_CURVE_CECPQ2, "CECPQ2", "CECPQ2"},
-    {NID_CECPQ2b, SSL_CURVE_CECPQ2b, "CECPQ2b", "CECPQ2b"},
 };
 
 }  // namespace
@@ -415,8 +332,6 @@
       return UniquePtr<SSLKeyShare>(New<X25519KeyShare>());
     case SSL_CURVE_CECPQ2:
       return UniquePtr<SSLKeyShare>(New<CECPQ2KeyShare>());
-    case SSL_CURVE_CECPQ2b:
-      return UniquePtr<SSLKeyShare>(New<CECPQ2bKeyShare>());
     default:
       return nullptr;
   }
diff --git a/ssl/t1_lib.cc b/ssl/t1_lib.cc
index cc29a83..e5a33dd 100644
--- a/ssl/t1_lib.cc
+++ b/ssl/t1_lib.cc
@@ -200,7 +200,7 @@
 }
 
 static bool is_post_quantum_group(uint16_t id) {
-  return id == SSL_CURVE_CECPQ2 || id == SSL_CURVE_CECPQ2b;
+  return id == SSL_CURVE_CECPQ2;
 }
 
 bool ssl_client_hello_init(const SSL *ssl, SSL_CLIENT_HELLO *out,
diff --git a/ssl/test/runner/common.go b/ssl/test/runner/common.go
index d1cf757..a4f787a 100644
--- a/ssl/test/runner/common.go
+++ b/ssl/test/runner/common.go
@@ -151,7 +151,6 @@
 	CurveP521    CurveID = 25
 	CurveX25519  CurveID = 29
 	CurveCECPQ2  CurveID = 16696
-	CurveCECPQ2b CurveID = 65074
 )
 
 // TLS Elliptic Curve Point Formats
@@ -1732,7 +1731,7 @@
 	return ret
 }
 
-var defaultCurvePreferences = []CurveID{CurveCECPQ2b, CurveCECPQ2, CurveX25519, CurveP256, CurveP384, CurveP521}
+var defaultCurvePreferences = []CurveID{CurveCECPQ2, CurveX25519, CurveP256, CurveP384, CurveP521}
 
 func (c *Config) curvePreferences() []CurveID {
 	if c == nil || len(c.CurvePreferences) == 0 {
diff --git a/ssl/test/runner/handshake_server.go b/ssl/test/runner/handshake_server.go
index 44b817e..2427856 100644
--- a/ssl/test/runner/handshake_server.go
+++ b/ssl/test/runner/handshake_server.go
@@ -210,7 +210,7 @@
 	if config.Bugs.FailIfCECPQ2Offered {
 		for _, offeredCurve := range hs.clientHello.supportedCurves {
 			if isPqGroup(offeredCurve) {
-				return errors.New("tls: CECPQ2 or CECPQ2b was offered")
+				return errors.New("tls: CECPQ2 was offered")
 			}
 		}
 	}
@@ -1227,7 +1227,7 @@
 Curves:
 	for _, curve := range hs.clientHello.supportedCurves {
 		if isPqGroup(curve) && c.vers < VersionTLS13 {
-			// CECPQ2 and CECPQ2b is TLS 1.3-only.
+			// CECPQ2 is TLS 1.3-only.
 			continue
 		}
 
diff --git a/ssl/test/runner/key_agreement.go b/ssl/test/runner/key_agreement.go
index 56cfec8..266163e 100644
--- a/ssl/test/runner/key_agreement.go
+++ b/ssl/test/runner/key_agreement.go
@@ -19,7 +19,6 @@
 
 	"boringssl.googlesource.com/boringssl/ssl/test/runner/curve25519"
 	"boringssl.googlesource.com/boringssl/ssl/test/runner/hrss"
-	"boringssl.googlesource.com/boringssl/ssl/test/runner/sike"
 )
 
 type keyType int
@@ -434,98 +433,6 @@
 	return preMasterSecret, nil
 }
 
-// cecpq2BCurve implements CECPQ2b, which is SIKE combined with X25519.
-type cecpq2BCurve struct {
-	// Both public key and shared secret size
-	x25519PrivateKey [32]byte
-	sikePrivateKey   *sike.PrivateKey
-}
-
-func (e *cecpq2BCurve) offer(rand io.Reader) (publicKey []byte, err error) {
-	if _, err = io.ReadFull(rand, e.x25519PrivateKey[:]); err != nil {
-		return nil, err
-	}
-
-	var x25519Public [32]byte
-	curve25519.ScalarBaseMult(&x25519Public, &e.x25519PrivateKey)
-
-	e.sikePrivateKey = sike.NewPrivateKey(sike.KeyVariant_SIKE)
-	if err = e.sikePrivateKey.Generate(rand); err != nil {
-		return nil, err
-	}
-
-	sikePublic := e.sikePrivateKey.GeneratePublicKey().Export()
-	var ret []byte
-	ret = append(ret, x25519Public[:]...)
-	ret = append(ret, sikePublic...)
-	return ret, nil
-}
-
-func (e *cecpq2BCurve) accept(rand io.Reader, peerKey []byte) (publicKey []byte, preMasterSecret []byte, err error) {
-	if len(peerKey) != 32+sike.Params.PublicKeySize {
-		return nil, nil, errors.New("tls: bad length CECPQ2b offer")
-	}
-
-	if _, err = io.ReadFull(rand, e.x25519PrivateKey[:]); err != nil {
-		return nil, nil, err
-	}
-
-	var x25519Shared, x25519PeerKey, x25519Public [32]byte
-	copy(x25519PeerKey[:], peerKey)
-	curve25519.ScalarBaseMult(&x25519Public, &e.x25519PrivateKey)
-	curve25519.ScalarMult(&x25519Shared, &e.x25519PrivateKey, &x25519PeerKey)
-
-	// Per RFC 7748, reject the all-zero value in constant time.
-	var zeros [32]byte
-	if subtle.ConstantTimeCompare(zeros[:], x25519Shared[:]) == 1 {
-		return nil, nil, errors.New("tls: X25519 value with wrong order")
-	}
-
-	var sikePubKey = sike.NewPublicKey(sike.KeyVariant_SIKE)
-	if err = sikePubKey.Import(peerKey[32:]); err != nil {
-		// should never happen as size was already checked
-		return nil, nil, errors.New("tls: implementation error")
-	}
-	sikeCiphertext, sikeShared, err := sike.Encapsulate(rand, sikePubKey)
-	if err != nil {
-		return nil, nil, err
-	}
-
-	publicKey = append(publicKey, x25519Public[:]...)
-	publicKey = append(publicKey, sikeCiphertext...)
-	preMasterSecret = append(preMasterSecret, x25519Shared[:]...)
-	preMasterSecret = append(preMasterSecret, sikeShared...)
-
-	return publicKey, preMasterSecret, nil
-}
-
-func (e *cecpq2BCurve) finish(peerKey []byte) (preMasterSecret []byte, err error) {
-	if len(peerKey) != 32+(sike.Params.PublicKeySize+sike.Params.MsgLen) {
-		return nil, errors.New("tls: bad length CECPQ2b reply")
-	}
-
-	var x25519Shared, x25519PeerKey [32]byte
-	copy(x25519PeerKey[:], peerKey)
-	curve25519.ScalarMult(&x25519Shared, &e.x25519PrivateKey, &x25519PeerKey)
-
-	// Per RFC 7748, reject the all-zero value in constant time.
-	var zeros [32]byte
-	if subtle.ConstantTimeCompare(zeros[:], x25519Shared[:]) == 1 {
-		return nil, errors.New("tls: X25519 value with wrong order")
-	}
-
-	var sikePubKey = e.sikePrivateKey.GeneratePublicKey()
-	sikeShared, err := sike.Decapsulate(e.sikePrivateKey, sikePubKey, peerKey[32:])
-	if err != nil {
-		return nil, errors.New("tls: invalid SIKE ciphertext")
-	}
-
-	preMasterSecret = append(preMasterSecret, x25519Shared[:]...)
-	preMasterSecret = append(preMasterSecret, sikeShared...)
-
-	return preMasterSecret, nil
-}
-
 func curveForCurveID(id CurveID, config *Config) (ecdhCurve, bool) {
 	switch id {
 	case CurveP224:
@@ -540,8 +447,6 @@
 		return &x25519ECDHCurve{setHighBit: config.Bugs.SetX25519HighBit}, true
 	case CurveCECPQ2:
 		return &cecpq2Curve{}, true
-	case CurveCECPQ2b:
-		return &cecpq2BCurve{}, true
 	default:
 		return nil, false
 	}
@@ -690,7 +595,7 @@
 NextCandidate:
 	for _, candidate := range preferredCurves {
 		if isPqGroup(candidate) && version < VersionTLS13 {
-			// CECPQ2 and CECPQ2b is TLS 1.3-only.
+			// CECPQ2 is TLS 1.3-only.
 			continue
 		}
 
diff --git a/ssl/test/runner/runner.go b/ssl/test/runner/runner.go
index 758566a..18b01aa 100644
--- a/ssl/test/runner/runner.go
+++ b/ssl/test/runner/runner.go
@@ -10449,13 +10449,12 @@
 	{"P-521", CurveP521},
 	{"X25519", CurveX25519},
 	{"CECPQ2", CurveCECPQ2},
-	{"CECPQ2b", CurveCECPQ2b},
 }
 
 const bogusCurve = 0x1234
 
 func isPqGroup(r CurveID) bool {
-	return r == CurveCECPQ2 || r == CurveCECPQ2b
+	return r == CurveCECPQ2
 }
 
 func addCurveTests() {
@@ -10928,21 +10927,6 @@
 		},
 	})
 
-	// CECPQ2b should not be offered by a TLS < 1.3 client.
-	testCases = append(testCases, testCase{
-		name: "CECPQ2bNotInTLS12",
-		config: Config{
-			Bugs: ProtocolBugs{
-				FailIfCECPQ2Offered: true,
-			},
-		},
-		flags: []string{
-			"-max-version", strconv.Itoa(VersionTLS12),
-			"-curves", strconv.Itoa(int(CurveCECPQ2b)),
-			"-curves", strconv.Itoa(int(CurveX25519)),
-		},
-	})
-
 	// CECPQ2 should not crash a TLS < 1.3 client if the server mistakenly
 	// selects it.
 	testCases = append(testCases, testCase{
@@ -10961,24 +10945,6 @@
 		expectedError: ":WRONG_CURVE:",
 	})
 
-	// CECPQ2b should not crash a TLS < 1.3 client if the server mistakenly
-	// selects it.
-	testCases = append(testCases, testCase{
-		name: "CECPQ2bNotAcceptedByTLS12Client",
-		config: Config{
-			Bugs: ProtocolBugs{
-				SendCurve: CurveCECPQ2b,
-			},
-		},
-		flags: []string{
-			"-max-version", strconv.Itoa(VersionTLS12),
-			"-curves", strconv.Itoa(int(CurveCECPQ2b)),
-			"-curves", strconv.Itoa(int(CurveX25519)),
-		},
-		shouldFail:    true,
-		expectedError: ":WRONG_CURVE:",
-	})
-
 	// CECPQ2 should not be offered by default as a client.
 	testCases = append(testCases, testCase{
 		name: "CECPQ2NotEnabledByDefaultInClients",
@@ -10990,17 +10956,6 @@
 		},
 	})
 
-	// CECPQ2b should not be offered by default as a client.
-	testCases = append(testCases, testCase{
-		name: "CECPQ2bNotEnabledByDefaultInClients",
-		config: Config{
-			MinVersion: VersionTLS13,
-			Bugs: ProtocolBugs{
-				FailIfCECPQ2Offered: true,
-			},
-		},
-	})
-
 	// If CECPQ2 is offered, both X25519 and CECPQ2 should have a key-share.
 	testCases = append(testCases, testCase{
 		name: "NotJustCECPQ2KeyShare",
@@ -11033,38 +10988,6 @@
 		},
 	})
 
-	// If CECPQ2b is offered, both X25519 and CECPQ2b should have a key-share.
-	testCases = append(testCases, testCase{
-		name: "NotJustCECPQ2bKeyShare",
-		config: Config{
-			MinVersion: VersionTLS13,
-			Bugs: ProtocolBugs{
-				ExpectedKeyShares: []CurveID{CurveCECPQ2b, CurveX25519},
-			},
-		},
-		flags: []string{
-			"-curves", strconv.Itoa(int(CurveCECPQ2b)),
-			"-curves", strconv.Itoa(int(CurveX25519)),
-			"-expect-curve-id", strconv.Itoa(int(CurveCECPQ2b)),
-		},
-	})
-
-	// ... but only if CECPQ2b is listed first.
-	testCases = append(testCases, testCase{
-		name: "CECPQ2bKeyShareNotIncludedSecond",
-		config: Config{
-			MinVersion: VersionTLS13,
-			Bugs: ProtocolBugs{
-				ExpectedKeyShares: []CurveID{CurveX25519},
-			},
-		},
-		flags: []string{
-			"-curves", strconv.Itoa(int(CurveX25519)),
-			"-curves", strconv.Itoa(int(CurveCECPQ2b)),
-			"-expect-curve-id", strconv.Itoa(int(CurveX25519)),
-		},
-	})
-
 	// If CECPQ2 is the only configured curve, the key share is sent.
 	testCases = append(testCases, testCase{
 		name: "JustConfiguringCECPQ2Works",
@@ -11080,21 +11003,6 @@
 		},
 	})
 
-	// If CECPQ2b is the only configured curve, the key share is sent.
-	testCases = append(testCases, testCase{
-		name: "JustConfiguringCECPQ2bWorks",
-		config: Config{
-			MinVersion: VersionTLS13,
-			Bugs: ProtocolBugs{
-				ExpectedKeyShares: []CurveID{CurveCECPQ2b},
-			},
-		},
-		flags: []string{
-			"-curves", strconv.Itoa(int(CurveCECPQ2b)),
-			"-expect-curve-id", strconv.Itoa(int(CurveCECPQ2b)),
-		},
-	})
-
 	// As a server, CECPQ2 is not yet supported by default.
 	testCases = append(testCases, testCase{
 		testType: serverTest,
@@ -11109,21 +11017,6 @@
 			"-expect-curve-id", strconv.Itoa(int(CurveX25519)),
 		},
 	})
-
-	// As a server, CECPQ2b is not yet supported by default.
-	testCases = append(testCases, testCase{
-		testType: serverTest,
-		name:     "CECPQ2bNotEnabledByDefaultForAServer",
-		config: Config{
-			MinVersion:       VersionTLS13,
-			CurvePreferences: []CurveID{CurveCECPQ2b, CurveX25519},
-			DefaultCurves:    []CurveID{CurveCECPQ2b},
-		},
-		flags: []string{
-			"-server-preference",
-			"-expect-curve-id", strconv.Itoa(int(CurveX25519)),
-		},
-	})
 }
 
 func addTLS13RecordTests() {
@@ -14049,21 +13942,6 @@
 		},
 	})
 
-	// CECPQ2b prefers 256-bit ciphers but will use AES-128 if there's nothing else.
-	testCases = append(testCases, testCase{
-		testType: serverTest,
-		name:     "TLS13-CipherPreference-CECPQ2b-AES128Only",
-		config: Config{
-			MaxVersion: VersionTLS13,
-			CipherSuites: []uint16{
-				TLS_AES_128_GCM_SHA256,
-			},
-		},
-		flags: []string{
-			"-curves", strconv.Itoa(int(CurveCECPQ2b)),
-		},
-	})
-
 	// When a 256-bit cipher is offered, even if not in first place, it should be
 	// picked.
 	testCases = append(testCases, testCase{
@@ -14098,40 +13976,6 @@
 		expectedCipher: TLS_AES_128_GCM_SHA256,
 	})
 
-	// When a 256-bit cipher is offered, even if not in first place, it should be
-	// picked.
-	testCases = append(testCases, testCase{
-		testType: serverTest,
-		name:     "TLS13-CipherPreference-CECPQ2b-AES256Preferred",
-		config: Config{
-			MaxVersion: VersionTLS13,
-			CipherSuites: []uint16{
-				TLS_AES_128_GCM_SHA256,
-				TLS_AES_256_GCM_SHA384,
-			},
-		},
-		flags: []string{
-			"-curves", strconv.Itoa(int(CurveCECPQ2b)),
-		},
-		expectedCipher: TLS_AES_256_GCM_SHA384,
-	})
-	// ... but when CECPQ2b isn't being used, the client's preference controls.
-	testCases = append(testCases, testCase{
-		testType: serverTest,
-		name:     "TLS13-CipherPreference-CECPQ2b-AES128PreferredOtherwise",
-		config: Config{
-			MaxVersion: VersionTLS13,
-			CipherSuites: []uint16{
-				TLS_AES_128_GCM_SHA256,
-				TLS_AES_256_GCM_SHA384,
-			},
-		},
-		flags: []string{
-			"-curves", strconv.Itoa(int(CurveX25519)),
-		},
-		expectedCipher: TLS_AES_128_GCM_SHA256,
-	})
-
 	// Test that CECPQ2 continues to honor AES vs ChaCha20 logic.
 	testCases = append(testCases, testCase{
 		testType: serverTest,
@@ -14167,42 +14011,6 @@
 			"-expect-cipher-no-aes", strconv.Itoa(int(TLS_CHACHA20_POLY1305_SHA256)),
 		},
 	})
-
-	// Test that CECPQ2b continues to honor AES vs ChaCha20 logic.
-	testCases = append(testCases, testCase{
-		testType: serverTest,
-		name:     "TLS13-CipherPreference-CECPQ2b-AES128-ChaCha20-AES256",
-		config: Config{
-			MaxVersion: VersionTLS13,
-			CipherSuites: []uint16{
-				TLS_AES_128_GCM_SHA256,
-				TLS_CHACHA20_POLY1305_SHA256,
-				TLS_AES_256_GCM_SHA384,
-			},
-		},
-		flags: []string{
-			"-curves", strconv.Itoa(int(CurveCECPQ2b)),
-			"-expect-cipher-aes", strconv.Itoa(int(TLS_CHACHA20_POLY1305_SHA256)),
-			"-expect-cipher-no-aes", strconv.Itoa(int(TLS_CHACHA20_POLY1305_SHA256)),
-		},
-	})
-	testCases = append(testCases, testCase{
-		testType: serverTest,
-		name:     "TLS13-CipherPreference-CECPQ2b-AES128-AES256-ChaCha20",
-		config: Config{
-			MaxVersion: VersionTLS13,
-			CipherSuites: []uint16{
-				TLS_AES_128_GCM_SHA256,
-				TLS_AES_256_GCM_SHA384,
-				TLS_CHACHA20_POLY1305_SHA256,
-			},
-		},
-		flags: []string{
-			"-curves", strconv.Itoa(int(CurveCECPQ2b)),
-			"-expect-cipher-aes", strconv.Itoa(int(TLS_AES_256_GCM_SHA384)),
-			"-expect-cipher-no-aes", strconv.Itoa(int(TLS_CHACHA20_POLY1305_SHA256)),
-		},
-	})
 }
 
 func addPeekTests() {
diff --git a/ssl/test/runner/sike/arith.go b/ssl/test/runner/sike/arith.go
deleted file mode 100644
index 10a2ca6..0000000
--- a/ssl/test/runner/sike/arith.go
+++ /dev/null
@@ -1,374 +0,0 @@
-// Copyright (c) 2019, Cloudflare Inc.
-//
-// Permission to use, copy, modify, and/or distribute this software for any
-// purpose with or without fee is hereby granted, provided that the above
-// copyright notice and this permission notice appear in all copies.
-//
-// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
-// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
-// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
-// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
-// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
-// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
-// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
-
-package sike
-
-import (
-	"math/bits"
-)
-
-// Compute z = x + y (mod 2*p).
-func fpAddRdc(z, x, y *Fp) {
-	var carry uint64
-
-	// z=x+y % p
-	for i := 0; i < FP_WORDS; i++ {
-		z[i], carry = bits.Add64(x[i], y[i], carry)
-	}
-
-	// z = z - pX2
-	carry = 0
-	for i := 0; i < FP_WORDS; i++ {
-		z[i], carry = bits.Sub64(z[i], pX2[i], carry)
-	}
-
-	// if z<0 add pX2 back
-	mask := uint64(0 - carry)
-	carry = 0
-	for i := 0; i < FP_WORDS; i++ {
-		z[i], carry = bits.Add64(z[i], pX2[i]&mask, carry)
-	}
-}
-
-// Compute z = x - y (mod 2*p).
-func fpSubRdc(z, x, y *Fp) {
-	var borrow uint64
-
-	// z = z - pX2
-	for i := 0; i < FP_WORDS; i++ {
-		z[i], borrow = bits.Sub64(x[i], y[i], borrow)
-	}
-
-	// if z<0 add pX2 back
-	mask := uint64(0 - borrow)
-	borrow = 0
-	for i := 0; i < FP_WORDS; i++ {
-		z[i], borrow = bits.Add64(z[i], pX2[i]&mask, borrow)
-	}
-}
-
-// Reduce a field element in [0, 2*p) to one in [0,p).
-func fpRdcP(x *Fp) {
-	var borrow, mask uint64
-	for i := 0; i < FP_WORDS; i++ {
-		x[i], borrow = bits.Sub64(x[i], p[i], borrow)
-	}
-
-	// Sets all bits if borrow = 1
-	mask = 0 - borrow
-	borrow = 0
-	for i := 0; i < FP_WORDS; i++ {
-		x[i], borrow = bits.Add64(x[i], p[i]&mask, borrow)
-	}
-}
-
-// Implementation doesn't actually depend on a prime field.
-func fpSwapCond(x, y *Fp, mask uint8) {
-	if mask != 0 {
-		var tmp Fp
-		copy(tmp[:], y[:])
-		copy(y[:], x[:])
-		copy(x[:], tmp[:])
-	}
-}
-
-// Compute z = x * y.
-func fpMul(z *FpX2, x, y *Fp) {
-	var carry, t, u, v uint64
-	var hi, lo uint64
-
-	for i := uint64(0); i < FP_WORDS; i++ {
-		for j := uint64(0); j <= i; j++ {
-			hi, lo = bits.Mul64(x[j], y[i-j])
-			v, carry = bits.Add64(lo, v, 0)
-			u, carry = bits.Add64(hi, u, carry)
-			t += carry
-		}
-		z[i] = v
-		v = u
-		u = t
-		t = 0
-	}
-
-	for i := FP_WORDS; i < (2*FP_WORDS)-1; i++ {
-		for j := i - FP_WORDS + 1; j < FP_WORDS; j++ {
-			hi, lo = bits.Mul64(x[j], y[i-j])
-			v, carry = bits.Add64(lo, v, 0)
-			u, carry = bits.Add64(hi, u, carry)
-			t += carry
-		}
-		z[i] = v
-		v = u
-		u = t
-		t = 0
-	}
-	z[2*FP_WORDS-1] = v
-}
-
-// Perform Montgomery reduction: set z = x R^{-1} (mod 2*p)
-// with R=2^512. Destroys the input value.
-func fpMontRdc(z *Fp, x *FpX2) {
-	var carry, t, u, v uint64
-	var hi, lo uint64
-	var count int
-
-	count = 3 // number of 0 digits in the least significat part of p + 1
-
-	for i := 0; i < FP_WORDS; i++ {
-		for j := 0; j < i; j++ {
-			if j < (i - count + 1) {
-				hi, lo = bits.Mul64(z[j], p1[i-j])
-				v, carry = bits.Add64(lo, v, 0)
-				u, carry = bits.Add64(hi, u, carry)
-				t += carry
-			}
-		}
-		v, carry = bits.Add64(v, x[i], 0)
-		u, carry = bits.Add64(u, 0, carry)
-		t += carry
-
-		z[i] = v
-		v = u
-		u = t
-		t = 0
-	}
-
-	for i := FP_WORDS; i < 2*FP_WORDS-1; i++ {
-		if count > 0 {
-			count--
-		}
-		for j := i - FP_WORDS + 1; j < FP_WORDS; j++ {
-			if j < (FP_WORDS - count) {
-				hi, lo = bits.Mul64(z[j], p1[i-j])
-				v, carry = bits.Add64(lo, v, 0)
-				u, carry = bits.Add64(hi, u, carry)
-				t += carry
-			}
-		}
-		v, carry = bits.Add64(v, x[i], 0)
-		u, carry = bits.Add64(u, 0, carry)
-
-		t += carry
-		z[i-FP_WORDS] = v
-		v = u
-		u = t
-		t = 0
-	}
-	v, carry = bits.Add64(v, x[2*FP_WORDS-1], 0)
-	z[FP_WORDS-1] = v
-}
-
-// Compute z = x + y, without reducing mod p.
-func fp2Add(z, x, y *FpX2) {
-	var carry uint64
-	for i := 0; i < 2*FP_WORDS; i++ {
-		z[i], carry = bits.Add64(x[i], y[i], carry)
-	}
-}
-
-// Compute z = x - y, without reducing mod p.
-func fp2Sub(z, x, y *FpX2) {
-	var borrow, mask uint64
-	for i := 0; i < 2*FP_WORDS; i++ {
-		z[i], borrow = bits.Sub64(x[i], y[i], borrow)
-	}
-
-	// Sets all bits if borrow = 1
-	mask = 0 - borrow
-	borrow = 0
-	for i := FP_WORDS; i < 2*FP_WORDS; i++ {
-		z[i], borrow = bits.Add64(z[i], p[i-FP_WORDS]&mask, borrow)
-	}
-}
-
-// Montgomery multiplication. Input values must be already
-// in Montgomery domain.
-func fpMulRdc(dest, lhs, rhs *Fp) {
-	a := lhs // = a*R
-	b := rhs // = b*R
-
-	var ab FpX2
-	fpMul(&ab, a, b)     // = a*b*R*R
-	fpMontRdc(dest, &ab) // = a*b*R mod p
-}
-
-// Set dest = x^((p-3)/4).  If x is square, this is 1/sqrt(x).
-// Uses variation of sliding-window algorithm from with window size
-// of 5 and least to most significant bit sliding (left-to-right)
-// See HAC 14.85 for general description.
-//
-// Allowed to overlap x with dest.
-// All values in Montgomery domains
-// Set dest = x^(2^k), for k >= 1, by repeated squarings.
-func p34(dest, x *Fp) {
-	var lookup [16]Fp
-
-	// This performs sum(powStrategy) + 1 squarings and len(lookup) + len(mulStrategy)
-	// multiplications.
-	powStrategy := []uint8{
-		0x03, 0x0A, 0x07, 0x05, 0x06, 0x05, 0x03, 0x08, 0x04, 0x07,
-		0x05, 0x06, 0x04, 0x05, 0x09, 0x06, 0x03, 0x0B, 0x05, 0x05,
-		0x02, 0x08, 0x04, 0x07, 0x07, 0x08, 0x05, 0x06, 0x04, 0x08,
-		0x05, 0x02, 0x0A, 0x06, 0x05, 0x04, 0x08, 0x05, 0x05, 0x05,
-		0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05,
-		0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05,
-		0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05,
-		0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x05, 0x01}
-	mulStrategy := []uint8{
-		0x02, 0x0F, 0x09, 0x08, 0x0E, 0x0C, 0x02, 0x08, 0x05, 0x0F,
-		0x08, 0x0F, 0x06, 0x06, 0x03, 0x02, 0x00, 0x0A, 0x09, 0x0D,
-		0x01, 0x0C, 0x03, 0x07, 0x01, 0x0A, 0x08, 0x0B, 0x02, 0x0F,
-		0x0E, 0x01, 0x0B, 0x0C, 0x0E, 0x03, 0x0B, 0x0F, 0x0F, 0x0F,
-		0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F,
-		0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F,
-		0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F,
-		0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x0F, 0x00}
-	initialMul := uint8(8)
-
-	// Precompute lookup table of odd multiples of x for window
-	// size k=5.
-	var xx Fp
-	fpMulRdc(&xx, x, x)
-	lookup[0] = *x
-	for i := 1; i < 16; i++ {
-		fpMulRdc(&lookup[i], &lookup[i-1], &xx)
-	}
-
-	// Now lookup = {x, x^3, x^5, ... }
-	// so that lookup[i] = x^{2*i + 1}
-	// so that lookup[k/2] = x^k, for odd k
-	*dest = lookup[initialMul]
-	for i := uint8(0); i < uint8(len(powStrategy)); i++ {
-		fpMulRdc(dest, dest, dest)
-		for j := uint8(1); j < powStrategy[i]; j++ {
-			fpMulRdc(dest, dest, dest)
-		}
-		fpMulRdc(dest, dest, &lookup[mulStrategy[i]])
-	}
-}
-
-func add(dest, lhs, rhs *Fp2) {
-	fpAddRdc(&dest.A, &lhs.A, &rhs.A)
-	fpAddRdc(&dest.B, &lhs.B, &rhs.B)
-}
-
-func sub(dest, lhs, rhs *Fp2) {
-	fpSubRdc(&dest.A, &lhs.A, &rhs.A)
-	fpSubRdc(&dest.B, &lhs.B, &rhs.B)
-}
-
-func mul(dest, lhs, rhs *Fp2) {
-	// Let (a,b,c,d) = (lhs.a,lhs.b,rhs.a,rhs.b).
-	a := &lhs.A
-	b := &lhs.B
-	c := &rhs.A
-	d := &rhs.B
-
-	// We want to compute
-	//
-	// (a + bi)*(c + di) = (a*c - b*d) + (a*d + b*c)i
-	//
-	// Use Karatsuba's trick: note that
-	//
-	// (b - a)*(c - d) = (b*c + a*d) - a*c - b*d
-	//
-	// so (a*d + b*c) = (b-a)*(c-d) + a*c + b*d.
-
-	var ac, bd FpX2
-	fpMul(&ac, a, c) // = a*c*R*R
-	fpMul(&bd, b, d) // = b*d*R*R
-
-	var b_minus_a, c_minus_d Fp
-	fpSubRdc(&b_minus_a, b, a) // = (b-a)*R
-	fpSubRdc(&c_minus_d, c, d) // = (c-d)*R
-
-	var ad_plus_bc FpX2
-	fpMul(&ad_plus_bc, &b_minus_a, &c_minus_d) // = (b-a)*(c-d)*R*R
-	fp2Add(&ad_plus_bc, &ad_plus_bc, &ac)      // = ((b-a)*(c-d) + a*c)*R*R
-	fp2Add(&ad_plus_bc, &ad_plus_bc, &bd)      // = ((b-a)*(c-d) + a*c + b*d)*R*R
-
-	fpMontRdc(&dest.B, &ad_plus_bc) // = (a*d + b*c)*R mod p
-
-	var ac_minus_bd FpX2
-	fp2Sub(&ac_minus_bd, &ac, &bd)   // = (a*c - b*d)*R*R
-	fpMontRdc(&dest.A, &ac_minus_bd) // = (a*c - b*d)*R mod p
-}
-
-func inv(dest, x *Fp2) {
-	var a2PlusB2 Fp
-	var asq, bsq FpX2
-	var ac FpX2
-	var minusB Fp
-	var minusBC FpX2
-
-	a := &x.A
-	b := &x.B
-
-	// We want to compute
-	//
-	//    1          1     (a - bi)	    (a - bi)
-	// -------- = -------- -------- = -----------
-	// (a + bi)   (a + bi) (a - bi)   (a^2 + b^2)
-	//
-	// Letting c = 1/(a^2 + b^2), this is
-	//
-	// 1/(a+bi) = a*c - b*ci.
-
-	fpMul(&asq, a, a)          // = a*a*R*R
-	fpMul(&bsq, b, b)          // = b*b*R*R
-	fp2Add(&asq, &asq, &bsq)   // = (a^2 + b^2)*R*R
-	fpMontRdc(&a2PlusB2, &asq) // = (a^2 + b^2)*R mod p
-	// Now a2PlusB2 = a^2 + b^2
-
-	inv := a2PlusB2
-	fpMulRdc(&inv, &a2PlusB2, &a2PlusB2)
-	p34(&inv, &inv)
-	fpMulRdc(&inv, &inv, &inv)
-	fpMulRdc(&inv, &inv, &a2PlusB2)
-
-	fpMul(&ac, a, &inv)
-	fpMontRdc(&dest.A, &ac)
-
-	fpSubRdc(&minusB, &minusB, b)
-	fpMul(&minusBC, &minusB, &inv)
-	fpMontRdc(&dest.B, &minusBC)
-}
-
-func sqr(dest, x *Fp2) {
-	var a2, aPlusB, aMinusB Fp
-	var a2MinB2, ab2 FpX2
-
-	a := &x.A
-	b := &x.B
-
-	// (a + bi)*(a + bi) = (a^2 - b^2) + 2abi.
-	fpAddRdc(&a2, a, a)                // = a*R + a*R = 2*a*R
-	fpAddRdc(&aPlusB, a, b)            // = a*R + b*R = (a+b)*R
-	fpSubRdc(&aMinusB, a, b)           // = a*R - b*R = (a-b)*R
-	fpMul(&a2MinB2, &aPlusB, &aMinusB) // = (a+b)*(a-b)*R*R = (a^2 - b^2)*R*R
-	fpMul(&ab2, &a2, b)                // = 2*a*b*R*R
-	fpMontRdc(&dest.A, &a2MinB2)       // = (a^2 - b^2)*R mod p
-	fpMontRdc(&dest.B, &ab2)           // = 2*a*b*R mod p
-}
-
-// In case choice == 1, performs following swap in constant time:
-// 	xPx <-> xQx
-//	xPz <-> xQz
-// Otherwise returns xPx, xPz, xQx, xQz unchanged
-func condSwap(xPx, xPz, xQx, xQz *Fp2, choice uint8) {
-	fpSwapCond(&xPx.A, &xQx.A, choice)
-	fpSwapCond(&xPx.B, &xQx.B, choice)
-	fpSwapCond(&xPz.A, &xQz.A, choice)
-	fpSwapCond(&xPz.B, &xQz.B, choice)
-}
diff --git a/ssl/test/runner/sike/consts.go b/ssl/test/runner/sike/consts.go
deleted file mode 100644
index 9d68a4f..0000000
--- a/ssl/test/runner/sike/consts.go
+++ /dev/null
@@ -1,317 +0,0 @@
-// Copyright (c) 2019, Cloudflare Inc.
-//
-// Permission to use, copy, modify, and/or distribute this software for any
-// purpose with or without fee is hereby granted, provided that the above
-// copyright notice and this permission notice appear in all copies.
-//
-// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
-// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
-// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
-// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
-// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
-// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
-// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
-
-package sike
-
-// I keep it bool in order to be able to apply logical NOT
-type KeyVariant uint
-
-// Representation of an element of the base field F_p.
-//
-// No particular meaning is assigned to the representation -- it could represent
-// an element in Montgomery form, or not.  Tracking the meaning of the field
-// element is left to higher types.
-type Fp [FP_WORDS]uint64
-
-// Represents an intermediate product of two elements of the base field F_p.
-type FpX2 [2 * FP_WORDS]uint64
-
-// Represents an element of the extended field Fp^2 = Fp(x+i)
-type Fp2 struct {
-	A Fp
-	B Fp
-}
-
-type DomainParams struct {
-	// P, Q and R=P-Q base points
-	Affine_P, Affine_Q, Affine_R Fp2
-	// Size of a compuatation strategy for x-torsion group
-	IsogenyStrategy []uint32
-	// Max size of secret key for x-torsion group
-	SecretBitLen uint
-	// Max size of secret key for x-torsion group
-	SecretByteLen uint
-}
-
-type SidhParams struct {
-	Id uint8
-	// Bytelen of P
-	Bytelen int
-	// The public key size, in bytes.
-	PublicKeySize int
-	// The shared secret size, in bytes.
-	SharedSecretSize int
-	// Defines A,C constant for starting curve Cy^2 = x^3 + Ax^2 + x
-	InitCurve ProjectiveCurveParameters
-	// 2- and 3-torsion group parameter definitions
-	A, B DomainParams
-	// Precomputed 1/2 in the Fp2 in Montgomery domain
-	HalfFp2 Fp2
-	// Precomputed identity element in the Fp2 in Montgomery domain
-	OneFp2 Fp2
-	// Length of SIKE secret message. Must be one of {24,32,40},
-	// depending on size of prime field used (see [SIKE], 1.4 and 5.1)
-	MsgLen int
-	// Length of SIKE ephemeral KEM key (see [SIKE], 1.4 and 5.1)
-	KemSize int
-	// Size of a ciphertext returned by encapsulation in bytes
-	CiphertextSize int
-}
-
-// Stores curve projective parameters equivalent to A/C. Meaning of the
-// values depends on the context. When working with isogenies over
-// subgroup that are powers of:
-// * three then  (A:C) ~ (A+2C:A-2C)
-// * four then   (A:C) ~ (A+2C:  4C)
-// See Appendix A of SIKE for more details
-type CurveCoefficientsEquiv struct {
-	A Fp2
-	C Fp2
-}
-
-// A point on the projective line P^1(F_{p^2}).
-//
-// This represents a point on the Kummer line of a Montgomery curve.  The
-// curve is specified by a ProjectiveCurveParameters struct.
-type ProjectivePoint struct {
-	X Fp2
-	Z Fp2
-}
-
-// Base type for public and private key. Used mainly to carry domain
-// parameters.
-type key struct {
-	// Domain parameters of the algorithm to be used with a key
-	params *SidhParams
-	// Flag indicates whether corresponds to 2-, 3-torsion group or SIKE
-	keyVariant KeyVariant
-}
-
-// Defines operations on private key
-type PrivateKey struct {
-	key
-	// Secret key
-	Scalar []byte
-	// Used only by KEM
-	S []byte
-}
-
-// Defines operations on public key
-type PublicKey struct {
-	key
-	affine_xP   Fp2
-	affine_xQ   Fp2
-	affine_xQmP Fp2
-}
-
-// A point on the projective line P^1(F_{p^2}).
-//
-// This is used to work projectively with the curve coefficients.
-type ProjectiveCurveParameters struct {
-	A Fp2
-	C Fp2
-}
-
-const (
-	// First 2 bits identify SIDH variant third bit indicates
-	// whether key is a SIKE variant (set) or SIDH (not set)
-
-	// 001 - SIDH: corresponds to 2-torsion group
-	KeyVariant_SIDH_A KeyVariant = 1 << 0
-	// 010 - SIDH: corresponds to 3-torsion group
-	KeyVariant_SIDH_B = 1 << 1
-	// 110 - SIKE
-	KeyVariant_SIKE = 1<<2 | KeyVariant_SIDH_B
-	// Number of uint64 limbs used to store field element
-	FP_WORDS = 7
-)
-
-// Used internally by this package
-// -------------------------------
-
-var (
-	p = Fp{
-		0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xFDC1767AE2FFFFFF,
-		0x7BC65C783158AEA3, 0x6CFC5FD681C52056, 0x2341F27177344,
-	}
-
-	// 2*p434
-	pX2 = Fp{
-		0xFFFFFFFFFFFFFFFE, 0xFFFFFFFFFFFFFFFF, 0xFFFFFFFFFFFFFFFF, 0xFB82ECF5C5FFFFFF,
-		0xF78CB8F062B15D47, 0xD9F8BFAD038A40AC, 0x4683E4E2EE688,
-	}
-
-	// p434 + 1
-	p1 = Fp{
-		0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0xFDC1767AE3000000,
-		0x7BC65C783158AEA3, 0x6CFC5FD681C52056, 0x0002341F27177344,
-	}
-
-	// R^2=(2^448)^2 mod p
-	R2 = Fp{
-		0x28E55B65DCD69B30, 0xACEC7367768798C2, 0xAB27973F8311688D, 0x175CC6AF8D6C7C0B,
-		0xABCD92BF2DDE347E, 0x69E16A61C7686D9A, 0x000025A89BCDD12A,
-	}
-
-	// 1/2 * R mod p
-	half = Fp2{
-		A: Fp{
-			0x0000000000003A16, 0x0000000000000000, 0x0000000000000000, 0x5C87FA027E000000,
-			0x6C00D27DAACFD66A, 0x74992A2A2FBBA086, 0x0000767753DE976D},
-	}
-
-	// 1*R mod p
-	one = Fp2{
-		A: Fp{
-			0x000000000000742C, 0x0000000000000000, 0x0000000000000000, 0xB90FF404FC000000,
-			0xD801A4FB559FACD4, 0xE93254545F77410C, 0x0000ECEEA7BD2EDA},
-	}
-
-	// 6*R mod p
-	six = Fp2{
-		A: Fp{
-			0x000000000002B90A, 0x0000000000000000, 0x0000000000000000, 0x5ADCCB2822000000,
-			0x187D24F39F0CAFB4, 0x9D353A4D394145A0, 0x00012559A0403298},
-	}
-
-	Params SidhParams
-)
-
-func init() {
-	Params = SidhParams{
-		// SIDH public key byte size.
-		PublicKeySize: 330,
-		// SIDH shared secret byte size.
-		SharedSecretSize: 110,
-		InitCurve: ProjectiveCurveParameters{
-			A: six,
-			C: one,
-		},
-		A: DomainParams{
-			// The x-coordinate of PA
-			Affine_P: Fp2{
-				A: Fp{
-					0x05ADF455C5C345BF, 0x91935C5CC767AC2B, 0xAFE4E879951F0257, 0x70E792DC89FA27B1,
-					0xF797F526BB48C8CD, 0x2181DB6131AF621F, 0x00000A1C08B1ECC4,
-				},
-				B: Fp{
-					0x74840EB87CDA7788, 0x2971AA0ECF9F9D0B, 0xCB5732BDF41715D5, 0x8CD8E51F7AACFFAA,
-					0xA7F424730D7E419F, 0xD671EB919A179E8C, 0x0000FFA26C5A924A,
-				},
-			},
-			// The x-coordinate of QA
-			Affine_Q: Fp2{
-				A: Fp{
-					0xFEC6E64588B7273B, 0xD2A626D74CBBF1C6, 0xF8F58F07A78098C7, 0xE23941F470841B03,
-					0x1B63EDA2045538DD, 0x735CFEB0FFD49215, 0x0001C4CB77542876,
-				},
-				B: Fp{
-					0xADB0F733C17FFDD6, 0x6AFFBD037DA0A050, 0x680EC43DB144E02F, 0x1E2E5D5FF524E374,
-					0xE2DDA115260E2995, 0xA6E4B552E2EDE508, 0x00018ECCDDF4B53E,
-				},
-			},
-			// The x-coordinate of RA = PA-QA
-			Affine_R: Fp2{
-				A: Fp{
-					0x01BA4DB518CD6C7D, 0x2CB0251FE3CC0611, 0x259B0C6949A9121B, 0x60E17AC16D2F82AD,
-					0x3AA41F1CE175D92D, 0x413FBE6A9B9BC4F3, 0x00022A81D8D55643,
-				},
-				B: Fp{
-					0xB8ADBC70FC82E54A, 0xEF9CDDB0D5FADDED, 0x5820C734C80096A0, 0x7799994BAA96E0E4,
-					0x044961599E379AF8, 0xDB2B94FBF09F27E2, 0x0000B87FC716C0C6,
-				},
-			},
-			// Max size of secret key for 2-torsion group, corresponds to 2^e2 - 1
-			SecretBitLen: 216,
-			// SecretBitLen in bytes.
-			SecretByteLen: 27,
-			// 2-torsion group computation strategy
-			IsogenyStrategy: []uint32{
-				0x30, 0x1C, 0x10, 0x08, 0x04, 0x02, 0x01, 0x01, 0x02, 0x01,
-				0x01, 0x04, 0x02, 0x01, 0x01, 0x02, 0x01, 0x01, 0x08, 0x04,
-				0x02, 0x01, 0x01, 0x02, 0x01, 0x01, 0x04, 0x02, 0x01, 0x01,
-				0x02, 0x01, 0x01, 0x0D, 0x07, 0x04, 0x02, 0x01, 0x01, 0x02,
-				0x01, 0x01, 0x03, 0x02, 0x01, 0x01, 0x01, 0x01, 0x05, 0x04,
-				0x02, 0x01, 0x01, 0x02, 0x01, 0x01, 0x02, 0x01, 0x01, 0x01,
-				0x15, 0x0C, 0x07, 0x04, 0x02, 0x01, 0x01, 0x02, 0x01, 0x01,
-				0x03, 0x02, 0x01, 0x01, 0x01, 0x01, 0x05, 0x03, 0x02, 0x01,
-				0x01, 0x01, 0x01, 0x02, 0x01, 0x01, 0x01, 0x09, 0x05, 0x03,
-				0x02, 0x01, 0x01, 0x01, 0x01, 0x02, 0x01, 0x01, 0x01, 0x04,
-				0x02, 0x01, 0x01, 0x01, 0x02, 0x01, 0x01},
-		},
-		B: DomainParams{
-			// The x-coordinate of PB
-			Affine_P: Fp2{
-				A: Fp{
-					0x6E5497556EDD48A3, 0x2A61B501546F1C05, 0xEB919446D049887D, 0x5864A4A69D450C4F,
-					0xB883F276A6490D2B, 0x22CC287022D5F5B9, 0x0001BED4772E551F,
-				},
-				B: Fp{
-					0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,
-					0x0000000000000000, 0x0000000000000000, 0x0000000000000000,
-				},
-			},
-			// The x-coordinate of QB
-			Affine_Q: Fp2{
-				A: Fp{
-					0xFAE2A3F93D8B6B8E, 0x494871F51700FE1C, 0xEF1A94228413C27C, 0x498FF4A4AF60BD62,
-					0xB00AD2A708267E8A, 0xF4328294E017837F, 0x000034080181D8AE,
-				},
-				B: Fp{
-					0x0000000000000000, 0x0000000000000000, 0x0000000000000000, 0x0000000000000000,
-					0x0000000000000000, 0x0000000000000000, 0x0000000000000000,
-				},
-			},
-			// The x-coordinate of RB = PB - QB
-			Affine_R: Fp2{
-				A: Fp{
-					0x283B34FAFEFDC8E4, 0x9208F44977C3E647, 0x7DEAE962816F4E9A, 0x68A2BA8AA262EC9D,
-					0x8176F112EA43F45B, 0x02106D022634F504, 0x00007E8A50F02E37,
-				},
-				B: Fp{
-					0xB378B7C1DA22CCB1, 0x6D089C99AD1D9230, 0xEBE15711813E2369, 0x2B35A68239D48A53,
-					0x445F6FD138407C93, 0xBEF93B29A3F6B54B, 0x000173FA910377D3,
-				},
-			},
-			// Size of secret key for 3-torsion group, corresponds to log_2(3^e3) - 1.
-			SecretBitLen: 217,
-			// SecretBitLen in bytes.
-			SecretByteLen: 28,
-			// 3-torsion group computation strategy
-			IsogenyStrategy: []uint32{
-				0x42, 0x21, 0x11, 0x09, 0x05, 0x03, 0x02, 0x01, 0x01, 0x01,
-				0x01, 0x02, 0x01, 0x01, 0x01, 0x04, 0x02, 0x01, 0x01, 0x01,
-				0x02, 0x01, 0x01, 0x08, 0x04, 0x02, 0x01, 0x01, 0x01, 0x02,
-				0x01, 0x01, 0x04, 0x02, 0x01, 0x01, 0x02, 0x01, 0x01, 0x10,
-				0x08, 0x04, 0x02, 0x01, 0x01, 0x01, 0x02, 0x01, 0x01, 0x04,
-				0x02, 0x01, 0x01, 0x02, 0x01, 0x01, 0x08, 0x04, 0x02, 0x01,
-				0x01, 0x02, 0x01, 0x01, 0x04, 0x02, 0x01, 0x01, 0x02, 0x01,
-				0x01, 0x20, 0x10, 0x08, 0x04, 0x03, 0x01, 0x01, 0x01, 0x01,
-				0x02, 0x01, 0x01, 0x04, 0x02, 0x01, 0x01, 0x02, 0x01, 0x01,
-				0x08, 0x04, 0x02, 0x01, 0x01, 0x02, 0x01, 0x01, 0x04, 0x02,
-				0x01, 0x01, 0x02, 0x01, 0x01, 0x10, 0x08, 0x04, 0x02, 0x01,
-				0x01, 0x02, 0x01, 0x01, 0x04, 0x02, 0x01, 0x01, 0x02, 0x01,
-				0x01, 0x08, 0x04, 0x02, 0x01, 0x01, 0x02, 0x01, 0x01, 0x04,
-				0x02, 0x01, 0x01, 0x02, 0x01, 0x01},
-		},
-		OneFp2:  one,
-		HalfFp2: half,
-		MsgLen:  16,
-		// SIKEp434 provides 128 bit of classical security ([SIKE], 5.1)
-		KemSize: 16,
-		// ceil(434+7/8)
-		Bytelen:        55,
-		CiphertextSize: 16 + 330,
-	}
-}
diff --git a/ssl/test/runner/sike/curve.go b/ssl/test/runner/sike/curve.go
deleted file mode 100644
index 8172546..0000000
--- a/ssl/test/runner/sike/curve.go
+++ /dev/null
@@ -1,422 +0,0 @@
-// Copyright (c) 2019, Cloudflare Inc.
-//
-// Permission to use, copy, modify, and/or distribute this software for any
-// purpose with or without fee is hereby granted, provided that the above
-// copyright notice and this permission notice appear in all copies.
-//
-// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
-// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
-// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
-// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
-// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
-// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
-// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
-
-package sike
-
-// Interface for working with isogenies.
-type isogeny interface {
-	// Given a torsion point on a curve computes isogenous curve.
-	// Returns curve coefficients (A:C), so that E_(A/C) = E_(A/C)/<P>,
-	// where P is a provided projective point. Sets also isogeny constants
-	// that are needed for isogeny evaluation.
-	GenerateCurve(*ProjectivePoint) CurveCoefficientsEquiv
-	// Evaluates isogeny at caller provided point. Requires isogeny curve constants
-	// to be earlier computed by GenerateCurve.
-	EvaluatePoint(*ProjectivePoint) ProjectivePoint
-}
-
-// Stores isogeny 3 curve constants
-type isogeny3 struct {
-	K1 Fp2
-	K2 Fp2
-}
-
-// Stores isogeny 4 curve constants
-type isogeny4 struct {
-	isogeny3
-	K3 Fp2
-}
-
-// Constructs isogeny3 objects
-func NewIsogeny3() isogeny {
-	return &isogeny3{}
-}
-
-// Constructs isogeny4 objects
-func NewIsogeny4() isogeny {
-	return &isogeny4{}
-}
-
-// Helper function for RightToLeftLadder(). Returns A+2C / 4.
-func calcAplus2Over4(cparams *ProjectiveCurveParameters) (ret Fp2) {
-	var tmp Fp2
-
-	// 2C
-	add(&tmp, &cparams.C, &cparams.C)
-	// A+2C
-	add(&ret, &cparams.A, &tmp)
-	// 1/4C
-	add(&tmp, &tmp, &tmp)
-	inv(&tmp, &tmp)
-	// A+2C/4C
-	mul(&ret, &ret, &tmp)
-	return
-}
-
-// Converts values in x.A and x.B to Montgomery domain
-// x.A = x.A * R mod p
-// x.B = x.B * R mod p
-// Performs v = v*R^2*R^(-1) mod p, for both x.A and x.B
-func toMontDomain(x *Fp2) {
-	var aRR FpX2
-
-	// convert to montgomery domain
-	fpMul(&aRR, &x.A, &R2) // = a*R*R
-	fpMontRdc(&x.A, &aRR)  // = a*R mod p
-	fpMul(&aRR, &x.B, &R2)
-	fpMontRdc(&x.B, &aRR)
-}
-
-// Converts values in x.A and x.B from Montgomery domain
-// a = x.A mod p
-// b = x.B mod p
-//
-// After returning from the call x is not modified.
-func fromMontDomain(x *Fp2, out *Fp2) {
-	var aR FpX2
-
-	// convert from montgomery domain
-	copy(aR[:], x.A[:])
-	fpMontRdc(&out.A, &aR) // = a mod p in [0, 2p)
-	fpRdcP(&out.A)         // = a mod p in [0, p)
-	for i := range aR {
-		aR[i] = 0
-	}
-	copy(aR[:], x.B[:])
-	fpMontRdc(&out.B, &aR)
-	fpRdcP(&out.B)
-}
-
-// Computes j-invariant for a curve y2=x3+A/Cx+x with A,C in F_(p^2). Result
-// is returned in 'j'. Implementation corresponds to Algorithm 9 from SIKE.
-func Jinvariant(cparams *ProjectiveCurveParameters, j *Fp2) {
-	var t0, t1 Fp2
-
-	sqr(j, &cparams.A)   // j  = A^2
-	sqr(&t1, &cparams.C) // t1 = C^2
-	add(&t0, &t1, &t1)   // t0 = t1 + t1
-	sub(&t0, j, &t0)     // t0 = j - t0
-	sub(&t0, &t0, &t1)   // t0 = t0 - t1
-	sub(j, &t0, &t1)     // t0 = t0 - t1
-	sqr(&t1, &t1)        // t1 = t1^2
-	mul(j, j, &t1)       // j = j * t1
-	add(&t0, &t0, &t0)   // t0 = t0 + t0
-	add(&t0, &t0, &t0)   // t0 = t0 + t0
-	sqr(&t1, &t0)        // t1 = t0^2
-	mul(&t0, &t0, &t1)   // t0 = t0 * t1
-	add(&t0, &t0, &t0)   // t0 = t0 + t0
-	add(&t0, &t0, &t0)   // t0 = t0 + t0
-	inv(j, j)            // j  = 1/j
-	mul(j, &t0, j)       // j  = t0 * j
-}
-
-// Given affine points x(P), x(Q) and x(Q-P) in a extension field F_{p^2}, function
-// recorvers projective coordinate A of a curve. This is Algorithm 10 from SIKE.
-func RecoverCoordinateA(curve *ProjectiveCurveParameters, xp, xq, xr *Fp2) {
-	var t0, t1 Fp2
-
-	add(&t1, xp, xq)                        // t1 = Xp + Xq
-	mul(&t0, xp, xq)                        // t0 = Xp * Xq
-	mul(&curve.A, xr, &t1)                  // A  = X(q-p) * t1
-	add(&curve.A, &curve.A, &t0)            // A  = A + t0
-	mul(&t0, &t0, xr)                       // t0 = t0 * X(q-p)
-	sub(&curve.A, &curve.A, &Params.OneFp2) // A  = A - 1
-	add(&t0, &t0, &t0)                      // t0 = t0 + t0
-	add(&t1, &t1, xr)                       // t1 = t1 + X(q-p)
-	add(&t0, &t0, &t0)                      // t0 = t0 + t0
-	sqr(&curve.A, &curve.A)                 // A  = A^2
-	inv(&t0, &t0)                           // t0 = 1/t0
-	mul(&curve.A, &curve.A, &t0)            // A  = A * t0
-	sub(&curve.A, &curve.A, &t1)            // A  = A - t1
-}
-
-// Computes equivalence (A:C) ~ (A+2C : A-2C)
-func CalcCurveParamsEquiv3(cparams *ProjectiveCurveParameters) CurveCoefficientsEquiv {
-	var coef CurveCoefficientsEquiv
-	var c2 Fp2
-
-	add(&c2, &cparams.C, &cparams.C)
-	// A24p = A+2*C
-	add(&coef.A, &cparams.A, &c2)
-	// A24m = A-2*C
-	sub(&coef.C, &cparams.A, &c2)
-	return coef
-}
-
-// Computes equivalence (A:C) ~ (A+2C : 4C)
-func CalcCurveParamsEquiv4(cparams *ProjectiveCurveParameters) CurveCoefficientsEquiv {
-	var coefEq CurveCoefficientsEquiv
-
-	add(&coefEq.C, &cparams.C, &cparams.C)
-	// A24p = A+2C
-	add(&coefEq.A, &cparams.A, &coefEq.C)
-	// C24 = 4*C
-	add(&coefEq.C, &coefEq.C, &coefEq.C)
-	return coefEq
-}
-
-// Recovers (A:C) curve parameters from projectively equivalent (A+2C:A-2C).
-func RecoverCurveCoefficients3(cparams *ProjectiveCurveParameters, coefEq *CurveCoefficientsEquiv) {
-	add(&cparams.A, &coefEq.A, &coefEq.C)
-	// cparams.A = 2*(A+2C+A-2C) = 4A
-	add(&cparams.A, &cparams.A, &cparams.A)
-	// cparams.C = (A+2C-A+2C) = 4C
-	sub(&cparams.C, &coefEq.A, &coefEq.C)
-	return
-}
-
-// Recovers (A:C) curve parameters from projectively equivalent (A+2C:4C).
-func RecoverCurveCoefficients4(cparams *ProjectiveCurveParameters, coefEq *CurveCoefficientsEquiv) {
-	// cparams.C = (4C)*1/2=2C
-	mul(&cparams.C, &coefEq.C, &Params.HalfFp2)
-	// cparams.A = A+2C - 2C = A
-	sub(&cparams.A, &coefEq.A, &cparams.C)
-	// cparams.C = 2C * 1/2 = C
-	mul(&cparams.C, &cparams.C, &Params.HalfFp2)
-	return
-}
-
-// Combined coordinate doubling and differential addition. Takes projective points
-// P,Q,Q-P and (A+2C)/4C curve E coefficient. Returns 2*P and P+Q calculated on E.
-// Function is used only by RightToLeftLadder. Corresponds to Algorithm 5 of SIKE
-func xDbladd(P, Q, QmP *ProjectivePoint, a24 *Fp2) (dblP, PaQ ProjectivePoint) {
-	var t0, t1, t2 Fp2
-	xQmP, zQmP := &QmP.X, &QmP.Z
-	xPaQ, zPaQ := &PaQ.X, &PaQ.Z
-	x2P, z2P := &dblP.X, &dblP.Z
-	xP, zP := &P.X, &P.Z
-	xQ, zQ := &Q.X, &Q.Z
-
-	add(&t0, xP, zP)      // t0   = Xp+Zp
-	sub(&t1, xP, zP)      // t1   = Xp-Zp
-	sqr(x2P, &t0)         // 2P.X = t0^2
-	sub(&t2, xQ, zQ)      // t2   = Xq-Zq
-	add(xPaQ, xQ, zQ)     // Xp+q = Xq+Zq
-	mul(&t0, &t0, &t2)    // t0   = t0 * t2
-	mul(z2P, &t1, &t1)    // 2P.Z = t1 * t1
-	mul(&t1, &t1, xPaQ)   // t1   = t1 * Xp+q
-	sub(&t2, x2P, z2P)    // t2   = 2P.X - 2P.Z
-	mul(x2P, x2P, z2P)    // 2P.X = 2P.X * 2P.Z
-	mul(xPaQ, a24, &t2)   // Xp+q = A24 * t2
-	sub(zPaQ, &t0, &t1)   // Zp+q = t0 - t1
-	add(z2P, xPaQ, z2P)   // 2P.Z = Xp+q + 2P.Z
-	add(xPaQ, &t0, &t1)   // Xp+q = t0 + t1
-	mul(z2P, z2P, &t2)    // 2P.Z = 2P.Z * t2
-	sqr(zPaQ, zPaQ)       // Zp+q = Zp+q ^ 2
-	sqr(xPaQ, xPaQ)       // Xp+q = Xp+q ^ 2
-	mul(zPaQ, xQmP, zPaQ) // Zp+q = Xq-p * Zp+q
-	mul(xPaQ, zQmP, xPaQ) // Xp+q = Zq-p * Xp+q
-	return
-}
-
-// Given the curve parameters, xP = x(P), computes xP = x([2^k]P)
-// Safe to overlap xP, x2P.
-func Pow2k(xP *ProjectivePoint, params *CurveCoefficientsEquiv, k uint32) {
-	var t0, t1 Fp2
-
-	x, z := &xP.X, &xP.Z
-	for i := uint32(0); i < k; i++ {
-		sub(&t0, x, z)           // t0  = Xp - Zp
-		add(&t1, x, z)           // t1  = Xp + Zp
-		sqr(&t0, &t0)            // t0  = t0 ^ 2
-		sqr(&t1, &t1)            // t1  = t1 ^ 2
-		mul(z, &params.C, &t0)   // Z2p = C24 * t0
-		mul(x, z, &t1)           // X2p = Z2p * t1
-		sub(&t1, &t1, &t0)       // t1  = t1 - t0
-		mul(&t0, &params.A, &t1) // t0  = A24+ * t1
-		add(z, z, &t0)           // Z2p = Z2p + t0
-		mul(z, z, &t1)           // Zp  = Z2p * t1
-	}
-}
-
-// Given the curve parameters, xP = x(P), and k >= 0, compute xP = x([3^k]P).
-//
-// Safe to overlap xP, xR.
-func Pow3k(xP *ProjectivePoint, params *CurveCoefficientsEquiv, k uint32) {
-	var t0, t1, t2, t3, t4, t5, t6 Fp2
-
-	x, z := &xP.X, &xP.Z
-	for i := uint32(0); i < k; i++ {
-		sub(&t0, x, z)           // t0  = Xp - Zp
-		sqr(&t2, &t0)            // t2  = t0^2
-		add(&t1, x, z)           // t1  = Xp + Zp
-		sqr(&t3, &t1)            // t3  = t1^2
-		add(&t4, &t1, &t0)       // t4  = t1 + t0
-		sub(&t0, &t1, &t0)       // t0  = t1 - t0
-		sqr(&t1, &t4)            // t1  = t4^2
-		sub(&t1, &t1, &t3)       // t1  = t1 - t3
-		sub(&t1, &t1, &t2)       // t1  = t1 - t2
-		mul(&t5, &t3, &params.A) // t5  = t3 * A24+
-		mul(&t3, &t3, &t5)       // t3  = t5 * t3
-		mul(&t6, &t2, &params.C) // t6  = t2 * A24-
-		mul(&t2, &t2, &t6)       // t2  = t2 * t6
-		sub(&t3, &t2, &t3)       // t3  = t2 - t3
-		sub(&t2, &t5, &t6)       // t2  = t5 - t6
-		mul(&t1, &t2, &t1)       // t1  = t2 * t1
-		add(&t2, &t3, &t1)       // t2  = t3 + t1
-		sqr(&t2, &t2)            // t2  = t2^2
-		mul(x, &t2, &t4)         // X3p = t2 * t4
-		sub(&t1, &t3, &t1)       // t1  = t3 - t1
-		sqr(&t1, &t1)            // t1  = t1^2
-		mul(z, &t1, &t0)         // Z3p = t1 * t0
-	}
-}
-
-// Set (y1, y2, y3)  = (1/x1, 1/x2, 1/x3).
-//
-// All xi, yi must be distinct.
-func Fp2Batch3Inv(x1, x2, x3, y1, y2, y3 *Fp2) {
-	var x1x2, t Fp2
-
-	mul(&x1x2, x1, x2) // x1*x2
-	mul(&t, &x1x2, x3) // 1/(x1*x2*x3)
-	inv(&t, &t)
-	mul(y1, &t, x2) // 1/x1
-	mul(y1, y1, x3)
-	mul(y2, &t, x1) // 1/x2
-	mul(y2, y2, x3)
-	mul(y3, &t, &x1x2) // 1/x3
-}
-
-// ScalarMul3Pt is a right-to-left point multiplication that given the
-// x-coordinate of P, Q and P-Q calculates the x-coordinate of R=Q+[scalar]P.
-// nbits must be smaller or equal to len(scalar).
-func ScalarMul3Pt(cparams *ProjectiveCurveParameters, P, Q, PmQ *ProjectivePoint, nbits uint, scalar []uint8) ProjectivePoint {
-	var R0, R2, R1 ProjectivePoint
-	aPlus2Over4 := calcAplus2Over4(cparams)
-	R1 = *P
-	R2 = *PmQ
-	R0 = *Q
-
-	// Iterate over the bits of the scalar, bottom to top
-	prevBit := uint8(0)
-	for i := uint(0); i < nbits; i++ {
-		bit := (scalar[i>>3] >> (i & 7) & 1)
-		swap := prevBit ^ bit
-		prevBit = bit
-		condSwap(&R1.X, &R1.Z, &R2.X, &R2.Z, swap)
-		R0, R2 = xDbladd(&R0, &R2, &R1, &aPlus2Over4)
-	}
-	condSwap(&R1.X, &R1.Z, &R2.X, &R2.Z, prevBit)
-	return R1
-}
-
-// Given a three-torsion point p = x(PB) on the curve E_(A:C), construct the
-// three-isogeny phi : E_(A:C) -> E_(A:C)/<P_3> = E_(A':C').
-//
-// Input: (XP_3: ZP_3), where P_3 has exact order 3 on E_A/C
-// Output: * Curve coordinates (A' + 2C', A' - 2C') corresponding to E_A'/C' = A_E/C/<P3>
-//         * isogeny phi with constants in F_p^2
-func (phi *isogeny3) GenerateCurve(p *ProjectivePoint) CurveCoefficientsEquiv {
-	var t0, t1, t2, t3, t4 Fp2
-	var coefEq CurveCoefficientsEquiv
-	var K1, K2 = &phi.K1, &phi.K2
-
-	sub(K1, &p.X, &p.Z)            // K1 = XP3 - ZP3
-	sqr(&t0, K1)                   // t0 = K1^2
-	add(K2, &p.X, &p.Z)            // K2 = XP3 + ZP3
-	sqr(&t1, K2)                   // t1 = K2^2
-	add(&t2, &t0, &t1)             // t2 = t0 + t1
-	add(&t3, K1, K2)               // t3 = K1 + K2
-	sqr(&t3, &t3)                  // t3 = t3^2
-	sub(&t3, &t3, &t2)             // t3 = t3 - t2
-	add(&t2, &t1, &t3)             // t2 = t1 + t3
-	add(&t3, &t3, &t0)             // t3 = t3 + t0
-	add(&t4, &t3, &t0)             // t4 = t3 + t0
-	add(&t4, &t4, &t4)             // t4 = t4 + t4
-	add(&t4, &t1, &t4)             // t4 = t1 + t4
-	mul(&coefEq.C, &t2, &t4)       // A24m = t2 * t4
-	add(&t4, &t1, &t2)             // t4 = t1 + t2
-	add(&t4, &t4, &t4)             // t4 = t4 + t4
-	add(&t4, &t0, &t4)             // t4 = t0 + t4
-	mul(&t4, &t3, &t4)             // t4 = t3 * t4
-	sub(&t0, &t4, &coefEq.C)       // t0 = t4 - A24m
-	add(&coefEq.A, &coefEq.C, &t0) // A24p = A24m + t0
-	return coefEq
-}
-
-// Given a 3-isogeny phi and a point pB = x(PB), compute x(QB), the x-coordinate
-// of the image QB = phi(PB) of PB under phi : E_(A:C) -> E_(A':C').
-//
-// The output xQ = x(Q) is then a point on the curve E_(A':C'); the curve
-// parameters are returned by the GenerateCurve function used to construct phi.
-func (phi *isogeny3) EvaluatePoint(p *ProjectivePoint) ProjectivePoint {
-	var t0, t1, t2 Fp2
-	var q ProjectivePoint
-	var K1, K2 = &phi.K1, &phi.K2
-	var px, pz = &p.X, &p.Z
-
-	add(&t0, px, pz)   // t0 = XQ + ZQ
-	sub(&t1, px, pz)   // t1 = XQ - ZQ
-	mul(&t0, K1, &t0)  // t2 = K1 * t0
-	mul(&t1, K2, &t1)  // t1 = K2 * t1
-	add(&t2, &t0, &t1) // t2 = t0 + t1
-	sub(&t0, &t1, &t0) // t0 = t1 - t0
-	sqr(&t2, &t2)      // t2 = t2 ^ 2
-	sqr(&t0, &t0)      // t0 = t0 ^ 2
-	mul(&q.X, px, &t2) // XQ'= XQ * t2
-	mul(&q.Z, pz, &t0) // ZQ'= ZQ * t0
-	return q
-}
-
-// Given a four-torsion point p = x(PB) on the curve E_(A:C), construct the
-// four-isogeny phi : E_(A:C) -> E_(A:C)/<P_4> = E_(A':C').
-//
-// Input: (XP_4: ZP_4), where P_4 has exact order 4 on E_A/C
-// Output: * Curve coordinates (A' + 2C', 4C') corresponding to E_A'/C' = A_E/C/<P4>
-//         * isogeny phi with constants in F_p^2
-func (phi *isogeny4) GenerateCurve(p *ProjectivePoint) CurveCoefficientsEquiv {
-	var coefEq CurveCoefficientsEquiv
-	var xp4, zp4 = &p.X, &p.Z
-	var K1, K2, K3 = &phi.K1, &phi.K2, &phi.K3
-
-	sub(K2, xp4, zp4)
-	add(K3, xp4, zp4)
-	sqr(K1, zp4)
-	add(K1, K1, K1)
-	sqr(&coefEq.C, K1)
-	add(K1, K1, K1)
-	sqr(&coefEq.A, xp4)
-	add(&coefEq.A, &coefEq.A, &coefEq.A)
-	sqr(&coefEq.A, &coefEq.A)
-	return coefEq
-}
-
-// Given a 4-isogeny phi and a point xP = x(P), compute x(Q), the x-coordinate
-// of the image Q = phi(P) of P under phi : E_(A:C) -> E_(A':C').
-//
-// Input: isogeny returned by GenerateCurve and point q=(Qx,Qz) from E0_A/C
-// Output: Corresponding point q from E1_A'/C', where E1 is 4-isogenous to E0
-func (phi *isogeny4) EvaluatePoint(p *ProjectivePoint) ProjectivePoint {
-	var t0, t1 Fp2
-	var q = *p
-	var xq, zq = &q.X, &q.Z
-	var K1, K2, K3 = &phi.K1, &phi.K2, &phi.K3
-
-	add(&t0, xq, zq)
-	sub(&t1, xq, zq)
-	mul(xq, &t0, K2)
-	mul(zq, &t1, K3)
-	mul(&t0, &t0, &t1)
-	mul(&t0, &t0, K1)
-	add(&t1, xq, zq)
-	sub(zq, xq, zq)
-	sqr(&t1, &t1)
-	sqr(zq, zq)
-	add(xq, &t0, &t1)
-	sub(&t0, zq, &t0)
-	mul(xq, xq, &t1)
-	mul(zq, zq, &t0)
-	return q
-}
diff --git a/ssl/test/runner/sike/sike.go b/ssl/test/runner/sike/sike.go
deleted file mode 100644
index dcd6cfc..0000000
--- a/ssl/test/runner/sike/sike.go
+++ /dev/null
@@ -1,683 +0,0 @@
-// Copyright (c) 2019, Cloudflare Inc.
-//
-// Permission to use, copy, modify, and/or distribute this software for any
-// purpose with or without fee is hereby granted, provided that the above
-// copyright notice and this permission notice appear in all copies.
-//
-// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
-// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
-// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
-// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
-// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
-// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
-// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
-
-package sike
-
-import (
-	"crypto/sha256"
-	"crypto/subtle"
-	"errors"
-	"io"
-)
-
-// Zeroize Fp2
-func zeroize(fp *Fp2) {
-	// Zeroizing in 2 separated loops tells compiler to
-	// use fast runtime.memclr()
-	for i := range fp.A {
-		fp.A[i] = 0
-	}
-	for i := range fp.B {
-		fp.B[i] = 0
-	}
-}
-
-// Convert the input to wire format.
-//
-// The output byte slice must be at least 2*bytelen(p) bytes long.
-func convFp2ToBytes(output []byte, fp2 *Fp2) {
-	if len(output) < 2*Params.Bytelen {
-		panic("output byte slice too short")
-	}
-	var a Fp2
-	fromMontDomain(fp2, &a)
-
-	// convert to bytes in little endian form
-	for i := 0; i < Params.Bytelen; i++ {
-		// set i = j*8 + k
-		tmp := i / 8
-		k := uint64(i % 8)
-		output[i] = byte(a.A[tmp] >> (8 * k))
-		output[i+Params.Bytelen] = byte(a.B[tmp] >> (8 * k))
-	}
-}
-
-// Read 2*bytelen(p) bytes into the given ExtensionFieldElement.
-//
-// It is an error to call this function if the input byte slice is less than 2*bytelen(p) bytes long.
-func convBytesToFp2(fp2 *Fp2, input []byte) {
-	if len(input) < 2*Params.Bytelen {
-		panic("input byte slice too short")
-	}
-
-	for i := 0; i < Params.Bytelen; i++ {
-		j := i / 8
-		k := uint64(i % 8)
-		fp2.A[j] |= uint64(input[i]) << (8 * k)
-		fp2.B[j] |= uint64(input[i+Params.Bytelen]) << (8 * k)
-	}
-	toMontDomain(fp2)
-}
-
-// -----------------------------------------------------------------------------
-// Functions for traversing isogeny trees acoording to strategy. Key type 'A' is
-//
-
-// Traverses isogeny tree in order to compute xR, xP, xQ and xQmP needed
-// for public key generation.
-func traverseTreePublicKeyA(curve *ProjectiveCurveParameters, xR, phiP, phiQ, phiR *ProjectivePoint, pub *PublicKey) {
-	var points = make([]ProjectivePoint, 0, 8)
-	var indices = make([]int, 0, 8)
-	var i, sidx int
-
-	cparam := CalcCurveParamsEquiv4(curve)
-	phi := NewIsogeny4()
-	strat := pub.params.A.IsogenyStrategy
-	stratSz := len(strat)
-
-	for j := 1; j <= stratSz; j++ {
-		for i <= stratSz-j {
-			points = append(points, *xR)
-			indices = append(indices, i)
-
-			k := strat[sidx]
-			sidx++
-			Pow2k(xR, &cparam, 2*k)
-			i += int(k)
-		}
-
-		cparam = phi.GenerateCurve(xR)
-		for k := 0; k < len(points); k++ {
-			points[k] = phi.EvaluatePoint(&points[k])
-		}
-
-		*phiP = phi.EvaluatePoint(phiP)
-		*phiQ = phi.EvaluatePoint(phiQ)
-		*phiR = phi.EvaluatePoint(phiR)
-
-		// pop xR from points
-		*xR, points = points[len(points)-1], points[:len(points)-1]
-		i, indices = int(indices[len(indices)-1]), indices[:len(indices)-1]
-	}
-}
-
-// Traverses isogeny tree in order to compute xR needed
-// for public key generation.
-func traverseTreeSharedKeyA(curve *ProjectiveCurveParameters, xR *ProjectivePoint, pub *PublicKey) {
-	var points = make([]ProjectivePoint, 0, 8)
-	var indices = make([]int, 0, 8)
-	var i, sidx int
-
-	cparam := CalcCurveParamsEquiv4(curve)
-	phi := NewIsogeny4()
-	strat := pub.params.A.IsogenyStrategy
-	stratSz := len(strat)
-
-	for j := 1; j <= stratSz; j++ {
-		for i <= stratSz-j {
-			points = append(points, *xR)
-			indices = append(indices, i)
-
-			k := strat[sidx]
-			sidx++
-			Pow2k(xR, &cparam, 2*k)
-			i += int(k)
-		}
-
-		cparam = phi.GenerateCurve(xR)
-		for k := 0; k < len(points); k++ {
-			points[k] = phi.EvaluatePoint(&points[k])
-		}
-
-		// pop xR from points
-		*xR, points = points[len(points)-1], points[:len(points)-1]
-		i, indices = int(indices[len(indices)-1]), indices[:len(indices)-1]
-	}
-}
-
-// Traverses isogeny tree in order to compute xR, xP, xQ and xQmP needed
-// for public key generation.
-func traverseTreePublicKeyB(curve *ProjectiveCurveParameters, xR, phiP, phiQ, phiR *ProjectivePoint, pub *PublicKey) {
-	var points = make([]ProjectivePoint, 0, 8)
-	var indices = make([]int, 0, 8)
-	var i, sidx int
-
-	cparam := CalcCurveParamsEquiv3(curve)
-	phi := NewIsogeny3()
-	strat := pub.params.B.IsogenyStrategy
-	stratSz := len(strat)
-
-	for j := 1; j <= stratSz; j++ {
-		for i <= stratSz-j {
-			points = append(points, *xR)
-			indices = append(indices, i)
-
-			k := strat[sidx]
-			sidx++
-			Pow3k(xR, &cparam, k)
-			i += int(k)
-		}
-
-		cparam = phi.GenerateCurve(xR)
-		for k := 0; k < len(points); k++ {
-			points[k] = phi.EvaluatePoint(&points[k])
-		}
-
-		*phiP = phi.EvaluatePoint(phiP)
-		*phiQ = phi.EvaluatePoint(phiQ)
-		*phiR = phi.EvaluatePoint(phiR)
-
-		// pop xR from points
-		*xR, points = points[len(points)-1], points[:len(points)-1]
-		i, indices = int(indices[len(indices)-1]), indices[:len(indices)-1]
-	}
-}
-
-// Traverses isogeny tree in order to compute xR, xP, xQ and xQmP needed
-// for public key generation.
-func traverseTreeSharedKeyB(curve *ProjectiveCurveParameters, xR *ProjectivePoint, pub *PublicKey) {
-	var points = make([]ProjectivePoint, 0, 8)
-	var indices = make([]int, 0, 8)
-	var i, sidx int
-
-	cparam := CalcCurveParamsEquiv3(curve)
-	phi := NewIsogeny3()
-	strat := pub.params.B.IsogenyStrategy
-	stratSz := len(strat)
-
-	for j := 1; j <= stratSz; j++ {
-		for i <= stratSz-j {
-			points = append(points, *xR)
-			indices = append(indices, i)
-
-			k := strat[sidx]
-			sidx++
-			Pow3k(xR, &cparam, k)
-			i += int(k)
-		}
-
-		cparam = phi.GenerateCurve(xR)
-		for k := 0; k < len(points); k++ {
-			points[k] = phi.EvaluatePoint(&points[k])
-		}
-
-		// pop xR from points
-		*xR, points = points[len(points)-1], points[:len(points)-1]
-		i, indices = int(indices[len(indices)-1]), indices[:len(indices)-1]
-	}
-}
-
-// Generate a public key in the 2-torsion group
-func publicKeyGenA(prv *PrivateKey) (pub *PublicKey) {
-	var xPA, xQA, xRA ProjectivePoint
-	var xPB, xQB, xRB, xK ProjectivePoint
-	var invZP, invZQ, invZR Fp2
-
-	pub = NewPublicKey(KeyVariant_SIDH_A)
-	var phi = NewIsogeny4()
-
-	// Load points for A
-	xPA = ProjectivePoint{X: prv.params.A.Affine_P, Z: prv.params.OneFp2}
-	xQA = ProjectivePoint{X: prv.params.A.Affine_Q, Z: prv.params.OneFp2}
-	xRA = ProjectivePoint{X: prv.params.A.Affine_R, Z: prv.params.OneFp2}
-
-	// Load points for B
-	xRB = ProjectivePoint{X: prv.params.B.Affine_R, Z: prv.params.OneFp2}
-	xQB = ProjectivePoint{X: prv.params.B.Affine_Q, Z: prv.params.OneFp2}
-	xPB = ProjectivePoint{X: prv.params.B.Affine_P, Z: prv.params.OneFp2}
-
-	// Find isogeny kernel
-	xK = ScalarMul3Pt(&pub.params.InitCurve, &xPA, &xQA, &xRA, prv.params.A.SecretBitLen, prv.Scalar)
-	traverseTreePublicKeyA(&pub.params.InitCurve, &xK, &xPB, &xQB, &xRB, pub)
-
-	// Secret isogeny
-	phi.GenerateCurve(&xK)
-	xPA = phi.EvaluatePoint(&xPB)
-	xQA = phi.EvaluatePoint(&xQB)
-	xRA = phi.EvaluatePoint(&xRB)
-	Fp2Batch3Inv(&xPA.Z, &xQA.Z, &xRA.Z, &invZP, &invZQ, &invZR)
-
-	mul(&pub.affine_xP, &xPA.X, &invZP)
-	mul(&pub.affine_xQ, &xQA.X, &invZQ)
-	mul(&pub.affine_xQmP, &xRA.X, &invZR)
-	return
-}
-
-// Generate a public key in the 3-torsion group
-func publicKeyGenB(prv *PrivateKey) (pub *PublicKey) {
-	var xPB, xQB, xRB, xK ProjectivePoint
-	var xPA, xQA, xRA ProjectivePoint
-	var invZP, invZQ, invZR Fp2
-
-	pub = NewPublicKey(prv.keyVariant)
-	var phi = NewIsogeny3()
-
-	// Load points for B
-	xRB = ProjectivePoint{X: prv.params.B.Affine_R, Z: prv.params.OneFp2}
-	xQB = ProjectivePoint{X: prv.params.B.Affine_Q, Z: prv.params.OneFp2}
-	xPB = ProjectivePoint{X: prv.params.B.Affine_P, Z: prv.params.OneFp2}
-
-	// Load points for A
-	xPA = ProjectivePoint{X: prv.params.A.Affine_P, Z: prv.params.OneFp2}
-	xQA = ProjectivePoint{X: prv.params.A.Affine_Q, Z: prv.params.OneFp2}
-	xRA = ProjectivePoint{X: prv.params.A.Affine_R, Z: prv.params.OneFp2}
-
-	xK = ScalarMul3Pt(&pub.params.InitCurve, &xPB, &xQB, &xRB, prv.params.B.SecretBitLen, prv.Scalar)
-	traverseTreePublicKeyB(&pub.params.InitCurve, &xK, &xPA, &xQA, &xRA, pub)
-
-	phi.GenerateCurve(&xK)
-	xPB = phi.EvaluatePoint(&xPA)
-	xQB = phi.EvaluatePoint(&xQA)
-	xRB = phi.EvaluatePoint(&xRA)
-	Fp2Batch3Inv(&xPB.Z, &xQB.Z, &xRB.Z, &invZP, &invZQ, &invZR)
-
-	mul(&pub.affine_xP, &xPB.X, &invZP)
-	mul(&pub.affine_xQ, &xQB.X, &invZQ)
-	mul(&pub.affine_xQmP, &xRB.X, &invZR)
-	return
-}
-
-// -----------------------------------------------------------------------------
-// Key agreement functions
-//
-
-// Establishing shared keys in in 2-torsion group
-func deriveSecretA(prv *PrivateKey, pub *PublicKey) []byte {
-	var sharedSecret = make([]byte, pub.params.SharedSecretSize)
-	var xP, xQ, xQmP ProjectivePoint
-	var xK ProjectivePoint
-	var cparam ProjectiveCurveParameters
-	var phi = NewIsogeny4()
-	var jInv Fp2
-
-	// Recover curve coefficients
-	RecoverCoordinateA(&cparam, &pub.affine_xP, &pub.affine_xQ, &pub.affine_xQmP)
-	// C=1
-	cparam.C = Params.OneFp2
-
-	// Find kernel of the morphism
-	xP = ProjectivePoint{X: pub.affine_xP, Z: pub.params.OneFp2}
-	xQ = ProjectivePoint{X: pub.affine_xQ, Z: pub.params.OneFp2}
-	xQmP = ProjectivePoint{X: pub.affine_xQmP, Z: pub.params.OneFp2}
-	xK = ScalarMul3Pt(&cparam, &xP, &xQ, &xQmP, pub.params.A.SecretBitLen, prv.Scalar)
-
-	// Traverse isogeny tree
-	traverseTreeSharedKeyA(&cparam, &xK, pub)
-
-	// Calculate j-invariant on isogeneus curve
-	c := phi.GenerateCurve(&xK)
-	RecoverCurveCoefficients4(&cparam, &c)
-	Jinvariant(&cparam, &jInv)
-	convFp2ToBytes(sharedSecret, &jInv)
-	return sharedSecret
-}
-
-// Establishing shared keys in in 3-torsion group
-func deriveSecretB(prv *PrivateKey, pub *PublicKey) []byte {
-	var sharedSecret = make([]byte, pub.params.SharedSecretSize)
-	var xP, xQ, xQmP ProjectivePoint
-	var xK ProjectivePoint
-	var cparam ProjectiveCurveParameters
-	var phi = NewIsogeny3()
-	var jInv Fp2
-
-	// Recover curve A coefficient
-	RecoverCoordinateA(&cparam, &pub.affine_xP, &pub.affine_xQ, &pub.affine_xQmP)
-	// C=1
-	cparam.C = Params.OneFp2
-
-	// Find kernel of the morphism
-	xP = ProjectivePoint{X: pub.affine_xP, Z: pub.params.OneFp2}
-	xQ = ProjectivePoint{X: pub.affine_xQ, Z: pub.params.OneFp2}
-	xQmP = ProjectivePoint{X: pub.affine_xQmP, Z: pub.params.OneFp2}
-	xK = ScalarMul3Pt(&cparam, &xP, &xQ, &xQmP, pub.params.B.SecretBitLen, prv.Scalar)
-
-	// Traverse isogeny tree
-	traverseTreeSharedKeyB(&cparam, &xK, pub)
-
-	// Calculate j-invariant on isogeneus curve
-	c := phi.GenerateCurve(&xK)
-	RecoverCurveCoefficients3(&cparam, &c)
-	Jinvariant(&cparam, &jInv)
-	convFp2ToBytes(sharedSecret, &jInv)
-	return sharedSecret
-}
-
-func encrypt(skA *PrivateKey, pkA, pkB *PublicKey, ptext []byte) ([]byte, error) {
-	if pkB.keyVariant != KeyVariant_SIKE {
-		return nil, errors.New("wrong key type")
-	}
-
-	j, err := DeriveSecret(skA, pkB)
-	if err != nil {
-		return nil, err
-	}
-
-	if len(ptext) != pkA.params.KemSize {
-		panic("Implementation error")
-	}
-
-	digest := sha256.Sum256(j)
-	// Uses truncated digest (first 16-bytes)
-	for i, _ := range ptext {
-		digest[i] ^= ptext[i]
-	}
-
-	ret := make([]byte, pkA.Size()+len(ptext))
-	copy(ret, pkA.Export())
-	copy(ret[pkA.Size():], digest[:pkA.params.KemSize])
-	return ret, nil
-}
-
-// NewPrivateKey initializes private key.
-// Usage of this function guarantees that the object is correctly initialized.
-func NewPrivateKey(v KeyVariant) *PrivateKey {
-	prv := &PrivateKey{key: key{params: &Params, keyVariant: v}}
-	if (v & KeyVariant_SIDH_A) == KeyVariant_SIDH_A {
-		prv.Scalar = make([]byte, prv.params.A.SecretByteLen)
-	} else {
-		prv.Scalar = make([]byte, prv.params.B.SecretByteLen)
-	}
-	if v == KeyVariant_SIKE {
-		prv.S = make([]byte, prv.params.MsgLen)
-	}
-	return prv
-}
-
-// NewPublicKey initializes public key.
-// Usage of this function guarantees that the object is correctly initialized.
-func NewPublicKey(v KeyVariant) *PublicKey {
-	return &PublicKey{key: key{params: &Params, keyVariant: v}}
-}
-
-// Import clears content of the public key currently stored in the structure
-// and imports key stored in the byte string. Returns error in case byte string
-// size is wrong. Doesn't perform any validation.
-func (pub *PublicKey) Import(input []byte) error {
-	if len(input) != pub.Size() {
-		return errors.New("sidh: input to short")
-	}
-	ssSz := pub.params.SharedSecretSize
-	convBytesToFp2(&pub.affine_xP, input[0:ssSz])
-	convBytesToFp2(&pub.affine_xQ, input[ssSz:2*ssSz])
-	convBytesToFp2(&pub.affine_xQmP, input[2*ssSz:3*ssSz])
-	return nil
-}
-
-// Exports currently stored key. In case structure hasn't been filled with key data
-// returned byte string is filled with zeros.
-func (pub *PublicKey) Export() []byte {
-	output := make([]byte, pub.params.PublicKeySize)
-	ssSz := pub.params.SharedSecretSize
-	convFp2ToBytes(output[0:ssSz], &pub.affine_xP)
-	convFp2ToBytes(output[ssSz:2*ssSz], &pub.affine_xQ)
-	convFp2ToBytes(output[2*ssSz:3*ssSz], &pub.affine_xQmP)
-	return output
-}
-
-// Size returns size of the public key in bytes
-func (pub *PublicKey) Size() int {
-	return pub.params.PublicKeySize
-}
-
-// Exports currently stored key. In case structure hasn't been filled with key data
-// returned byte string is filled with zeros.
-func (prv *PrivateKey) Export() []byte {
-	ret := make([]byte, len(prv.Scalar)+len(prv.S))
-	copy(ret, prv.S)
-	copy(ret[len(prv.S):], prv.Scalar)
-	return ret
-}
-
-// Size returns size of the private key in bytes
-func (prv *PrivateKey) Size() int {
-	tmp := len(prv.Scalar)
-	if prv.keyVariant == KeyVariant_SIKE {
-		tmp += int(prv.params.MsgLen)
-	}
-	return tmp
-}
-
-// Import clears content of the private key currently stored in the structure
-// and imports key from octet string. In case of SIKE, the random value 'S'
-// must be prepended to the value of actual private key (see SIKE spec for details).
-// Function doesn't import public key value to PrivateKey object.
-func (prv *PrivateKey) Import(input []byte) error {
-	if len(input) != prv.Size() {
-		return errors.New("sidh: input to short")
-	}
-	copy(prv.S, input[:len(prv.S)])
-	copy(prv.Scalar, input[len(prv.S):])
-	return nil
-}
-
-// Generates random private key for SIDH or SIKE. Generated value is
-// formed as little-endian integer from key-space <2^(e2-1)..2^e2 - 1>
-// for KeyVariant_A or <2^(s-1)..2^s - 1>, where s = floor(log_2(3^e3)),
-// for KeyVariant_B.
-//
-// Returns error in case user provided RNG fails.
-func (prv *PrivateKey) Generate(rand io.Reader) error {
-	var err error
-	var dp *DomainParams
-
-	if (prv.keyVariant & KeyVariant_SIDH_A) == KeyVariant_SIDH_A {
-		dp = &prv.params.A
-	} else {
-		dp = &prv.params.B
-	}
-
-	if prv.keyVariant == KeyVariant_SIKE {
-		_, err = io.ReadFull(rand, prv.S)
-	}
-
-	// Private key generation takes advantage of the fact that keyspace for secret
-	// key is (0, 2^x - 1), for some possitivite value of 'x' (see SIKE, 1.3.8).
-	// It means that all bytes in the secret key, but the last one, can take any
-	// value between <0x00,0xFF>. Similarily for the last byte, but generation
-	// needs to chop off some bits, to make sure generated value is an element of
-	// a key-space.
-	_, err = io.ReadFull(rand, prv.Scalar)
-	if err != nil {
-		return err
-	}
-	prv.Scalar[len(prv.Scalar)-1] &= (1 << (dp.SecretBitLen % 8)) - 1
-	// Make sure scalar is SecretBitLen long. SIKE spec says that key
-	// space starts from 0, but I'm not confortable with having low
-	// value scalars used for private keys. It is still secrure as per
-	// table 5.1 in [SIKE].
-	prv.Scalar[len(prv.Scalar)-1] |= 1 << ((dp.SecretBitLen % 8) - 1)
-	return err
-}
-
-// Generates public key.
-//
-// Constant time.
-func (prv *PrivateKey) GeneratePublicKey() *PublicKey {
-	if (prv.keyVariant & KeyVariant_SIDH_A) == KeyVariant_SIDH_A {
-		return publicKeyGenA(prv)
-	}
-	return publicKeyGenB(prv)
-}
-
-// Computes a shared secret which is a j-invariant. Function requires that pub has
-// different KeyVariant than prv. Length of returned output is 2*ceil(log_2 P)/8),
-// where P is a prime defining finite field.
-//
-// It's important to notice that each keypair must not be used more than once
-// to calculate shared secret.
-//
-// Function may return error. This happens only in case provided input is invalid.
-// Constant time for properly initialized private and public key.
-func DeriveSecret(prv *PrivateKey, pub *PublicKey) ([]byte, error) {
-
-	if (pub == nil) || (prv == nil) {
-		return nil, errors.New("sidh: invalid arguments")
-	}
-
-	if (pub.keyVariant == prv.keyVariant) || (pub.params.Id != prv.params.Id) {
-		return nil, errors.New("sidh: public and private are incompatbile")
-	}
-
-	if (prv.keyVariant & KeyVariant_SIDH_A) == KeyVariant_SIDH_A {
-		return deriveSecretA(prv, pub), nil
-	} else {
-		return deriveSecretB(prv, pub), nil
-	}
-}
-
-// Uses SIKE public key to encrypt plaintext. Requires cryptographically secure PRNG
-// Returns ciphertext in case encryption succeeds. Returns error in case PRNG fails
-// or wrongly formatted input was provided.
-func Encrypt(rng io.Reader, pub *PublicKey, ptext []byte) ([]byte, error) {
-	var ptextLen = len(ptext)
-	// c1 must be security level + 64 bits (see [SIKE] 1.4 and 4.3.3)
-	if ptextLen != pub.params.KemSize {
-		return nil, errors.New("Unsupported message length")
-	}
-
-	skA := NewPrivateKey(KeyVariant_SIDH_A)
-	err := skA.Generate(rng)
-	if err != nil {
-		return nil, err
-	}
-
-	pkA := skA.GeneratePublicKey()
-	return encrypt(skA, pkA, pub, ptext)
-}
-
-// Uses SIKE private key to decrypt ciphertext. Returns plaintext in case
-// decryption succeeds or error in case unexptected input was provided.
-// Constant time
-func Decrypt(prv *PrivateKey, ctext []byte) ([]byte, error) {
-	var c1_len int
-	n := make([]byte, prv.params.KemSize)
-	pk_len := prv.params.PublicKeySize
-
-	if prv.keyVariant != KeyVariant_SIKE {
-		return nil, errors.New("wrong key type")
-	}
-
-	// ctext is a concatenation of (pubkey_A || c1=ciphertext)
-	// it must be security level + 64 bits (see [SIKE] 1.4 and 4.3.3)
-	c1_len = len(ctext) - pk_len
-	if c1_len != int(prv.params.KemSize) {
-		return nil, errors.New("wrong size of cipher text")
-	}
-
-	c0 := NewPublicKey(KeyVariant_SIDH_A)
-	err := c0.Import(ctext[:pk_len])
-	if err != nil {
-		return nil, err
-	}
-	j, err := DeriveSecret(prv, c0)
-	if err != nil {
-		return nil, err
-	}
-
-	digest := sha256.Sum256(j)
-	copy(n, digest[:])
-
-	for i, _ := range n {
-		n[i] ^= ctext[pk_len+i]
-	}
-	return n[:c1_len], nil
-}
-
-// Encapsulation receives the public key and generates SIKE ciphertext and shared secret.
-// The generated ciphertext is used for authentication.
-// The rng must be cryptographically secure PRNG.
-// Error is returned in case PRNG fails or wrongly formatted input was provided.
-func Encapsulate(rng io.Reader, pub *PublicKey) (ctext []byte, secret []byte, err error) {
-	// Buffer for random, secret message
-	ptext := make([]byte, pub.params.MsgLen)
-	// SHA256 hash context object
-	d := sha256.New()
-
-	// Generate ephemeral value
-	_, err = io.ReadFull(rng, ptext)
-	if err != nil {
-		return nil, nil, err
-	}
-
-	// Implementation uses first 28-bytes of secret
-	d.Write(ptext)
-	d.Write(pub.Export())
-	digest := d.Sum(nil)
-	// r = G(ptext||pub)
-	r := digest[:pub.params.A.SecretByteLen]
-
-	// (c0 || c1) = Enc(pkA, ptext; r)
-	skA := NewPrivateKey(KeyVariant_SIDH_A)
-	err = skA.Import(r)
-	if err != nil {
-		return nil, nil, err
-	}
-
-	pkA := skA.GeneratePublicKey()
-	ctext, err = encrypt(skA, pkA, pub, ptext)
-	if err != nil {
-		return nil, nil, err
-	}
-
-	// K = H(ptext||(c0||c1))
-	d.Reset()
-	d.Write(ptext)
-	d.Write(ctext)
-	digest = d.Sum(digest[:0])
-	return ctext, digest[:pub.params.KemSize], nil
-}
-
-// Decapsulate given the keypair and ciphertext as inputs, Decapsulate outputs a shared
-// secret if plaintext verifies correctly, otherwise function outputs random value.
-// Decapsulation may fail in case input is wrongly formatted.
-// Constant time for properly initialized input.
-func Decapsulate(prv *PrivateKey, pub *PublicKey, ctext []byte) ([]byte, error) {
-	var skA = NewPrivateKey(KeyVariant_SIDH_A)
-	// SHA256 hash context object
-	d := sha256.New()
-
-	m, err := Decrypt(prv, ctext)
-	if err != nil {
-		return nil, err
-	}
-
-	// r' = G(m'||pub)
-	d.Write(m)
-	d.Write(pub.Export())
-	digest := d.Sum(nil)
-	// Never fails
-	skA.Import(digest[:pub.params.A.SecretByteLen])
-
-	// Never fails
-	pkA := skA.GeneratePublicKey()
-	c0 := pkA.Export()
-
-	d.Reset()
-	if subtle.ConstantTimeCompare(c0, ctext[:len(c0)]) == 1 {
-		d.Write(m)
-	} else {
-		// S is chosen at random when generating a key and is unknown to the other party. It
-		// may seem weird, but it's correct. It is important that S is unpredictable
-		// to other party. Without this check, it is possible to recover a secret, by
-		// providing series of invalid ciphertexts. It is also important that in case
-		//
-		// See more details in "On the security of supersingular isogeny cryptosystems"
-		// (S. Galbraith, et al., 2016, ePrint #859).
-		d.Write(prv.S)
-	}
-	d.Write(ctext)
-	digest = d.Sum(digest[:0])
-	return digest[:pub.params.KemSize], nil
-}
diff --git a/ssl/test/runner/sike/sike_test.go b/ssl/test/runner/sike/sike_test.go
deleted file mode 100644
index 2e146bc..0000000
--- a/ssl/test/runner/sike/sike_test.go
+++ /dev/null
@@ -1,698 +0,0 @@
-// Copyright (c) 2019, Cloudflare Inc.
-//
-// Permission to use, copy, modify, and/or distribute this software for any
-// purpose with or without fee is hereby granted, provided that the above
-// copyright notice and this permission notice appear in all copies.
-//
-// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
-// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
-// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
-// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
-// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
-// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
-// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
-
-package sike
-
-import (
-	"bufio"
-	"bytes"
-	"crypto/rand"
-	"encoding/hex"
-	"math/big"
-	"strings"
-	"testing"
-)
-
-var tdata = struct {
-	name     string
-	PrB_sidh string
-	PkB_sidh string
-	PrA_sidh string
-	PkA_sidh string
-	PkB_sike string
-	PrB_sike string
-}{
-	name:     "P-434",
-	PrA_sidh: "3A727E04EA9B7E2A766A6F846489E7E7B915263BCEED308BB10FC9",
-	PkA_sidh: "9E668D1E6750ED4B91EE052C32839CA9DD2E56D52BC24DECC950AA" +
-		"AD24CEED3F9049C77FE80F0B9B01E7F8DAD7833EEC2286544D6380" +
-		"009C379CDD3E7517CEF5E20EB01F8231D52FC30DC61D2F63FB357F" +
-		"85DC6396E8A95DB9740BD3A972C8DB7901B31F074CD3E45345CA78" +
-		"F900817130E688A29A7CF0073B5C00FF2C65FBE776918EF9BD8E75" +
-		"B29EF7FAB791969B60B0C5B37A8992EDEF95FA7BAC40A95DAFE02E" +
-		"237301FEE9A7A43FD0B73477E8035DD12B73FAFEF18D39904DDE36" +
-		"53A754F36BE1888F6607C6A7951349A414352CF31A29F2C40302DB" +
-		"406C48018C905EB9DC46AFBF42A9187A9BB9E51B587622A2862DC7" +
-		"D5CC598BF38ED6320FB51D8697AD3D7A72ABCC32A393F0133DA8DF" +
-		"5E253D9E00B760B2DF342FCE974DCFE946CFE4727783531882800F" +
-		"9E5DD594D6D5A6275EEFEF9713ED838F4A06BB34D7B8D46E0B385A" +
-		"AEA1C7963601",
-	PrB_sidh: "E37BFE55B43B32448F375903D8D226EC94ADBFEA1D2B3536EB987001",
-	PkB_sidh: "C9F73E4497AAA3FDF9EB688135866A8A83934BA10E273B8CC3808C" +
-		"F0C1F5FAB3E9BB295885881B73DEBC875670C0F51C4BB40DF5FEDE" +
-		"01B8AF32D1BF10508B8C17B2734EB93B2B7F5D84A4A0F2F816E9E2" +
-		"C32AC253C0B6025B124D05A87A9E2A8567930F44BAA14219B941B6" +
-		"B400B4AED1D796DA12A5A9F0B8F3F5EE9DD43F64CB24A3B1719DF2" +
-		"78ADF56B5F3395187829DA2319DEABF6BBD6EDA244DE2B62CC5AC2" +
-		"50C1009DD1CD4712B0B37406612AD002B5E51A62B51AC9C0374D14" +
-		"3ABBBD58275FAFC4A5E959C54838C2D6D9FB43B7B2609061267B6A" +
-		"2E6C6D01D295C4223E0D3D7A4CDCFB28A7818A737935279751A6DD" +
-		"8290FD498D1F6AD5F4FFF6BDFA536713F509DCE8047252F1E7D0DD" +
-		"9FCC414C0070B5DCCE3665A21A032D7FBE749181032183AFAD240B" +
-		"7E671E87FBBEC3A8CA4C11AA7A9A23AC69AE2ACF54B664DECD2775" +
-		"3D63508F1B02",
-	PrB_sike: "4B622DE1350119C45A9F2E2EF3DC5DF56A27FCDFCDDAF58CD69B90" +
-		"3752D68C200934E160B234E49EDE247601",
-	PkB_sike: "1BD0A2E81307B6F96461317DDF535ACC0E59C742627BAE60D27605" +
-		"E10FAF722D22A73E184CB572A12E79DCD58C6B54FB01442114CBE9" +
-		"010B6CAEC25D04C16C5E42540C1524C545B8C67614ED4183C9FA5B" +
-		"D0BE45A7F89FBC770EE8E7E5E391C7EE6F35F74C29E6D9E35B1663" +
-		"DA01E48E9DEB2347512D366FDE505161677055E3EF23054D276E81" +
-		"7E2C57025DA1C10D2461F68617F2D11256EEE4E2D7DBDF6C8E34F3" +
-		"A0FD00C625428CB41857002159DAB94267ABE42D630C6AAA91AF83" +
-		"7C7A6740754EA6634C45454C51B0BB4D44C3CCCCE4B32C00901CF6" +
-		"9C008D013348379B2F9837F428A01B6173584691F2A6F3A3C4CF48" +
-		"7D20D261B36C8CDB1BC158E2A5162A9DA4F7A97AA0879B9897E2B6" +
-		"891B672201F9AEFBF799C27B2587120AC586A511360926FB7DA8EB" +
-		"F5CB5272F396AE06608422BE9792E2CE9BEF21BF55B7EFF8DC7EC8" +
-		"C99910D3F800",
-}
-
-/* -------------------------------------------------------------------------
-   Helpers
-   -------------------------------------------------------------------------*/
-// Fail if err !=nil. Display msg as an error message
-func checkErr(t testing.TB, err error, msg string) {
-	t.Helper()
-	if err != nil {
-		t.Error(msg)
-	}
-}
-
-// Utility used for running same test with all registered prime fields
-type MultiIdTestingFunc func(testing.TB)
-
-// Converts string to private key
-func convToPrv(s string, v KeyVariant) *PrivateKey {
-	key := NewPrivateKey(v)
-	hex, e := hex.DecodeString(s)
-	if e != nil {
-		panic("non-hex number provided")
-	}
-	e = key.Import(hex)
-	if e != nil {
-		panic("Can't import private key")
-	}
-	return key
-}
-
-// Converts string to public key
-func convToPub(s string, v KeyVariant) *PublicKey {
-	key := NewPublicKey(v)
-	hex, e := hex.DecodeString(s)
-	if e != nil {
-		panic("non-hex number provided")
-	}
-	e = key.Import(hex)
-	if e != nil {
-		panic("Can't import public key")
-	}
-	return key
-}
-
-/* -------------------------------------------------------------------------
-   Unit tests
-   -------------------------------------------------------------------------*/
-func TestKeygen(t *testing.T) {
-	alicePrivate := convToPrv(tdata.PrA_sidh, KeyVariant_SIDH_A)
-	bobPrivate := convToPrv(tdata.PrB_sidh, KeyVariant_SIDH_B)
-	expPubA := convToPub(tdata.PkA_sidh, KeyVariant_SIDH_A)
-	expPubB := convToPub(tdata.PkB_sidh, KeyVariant_SIDH_B)
-
-	pubA := alicePrivate.GeneratePublicKey()
-	pubB := bobPrivate.GeneratePublicKey()
-
-	if !bytes.Equal(pubA.Export(), expPubA.Export()) {
-		t.Fatalf("unexpected value of public key A")
-	}
-	if !bytes.Equal(pubB.Export(), expPubB.Export()) {
-		t.Fatalf("unexpected value of public key B")
-	}
-}
-
-func TestImportExport(t *testing.T) {
-	var err error
-	a := NewPublicKey(KeyVariant_SIDH_A)
-	b := NewPublicKey(KeyVariant_SIDH_B)
-
-	// Import keys
-	a_hex, err := hex.DecodeString(tdata.PkA_sidh)
-	checkErr(t, err, "invalid hex-number provided")
-
-	err = a.Import(a_hex)
-	checkErr(t, err, "import failed")
-
-	b_hex, err := hex.DecodeString(tdata.PkB_sike)
-	checkErr(t, err, "invalid hex-number provided")
-
-	err = b.Import(b_hex)
-	checkErr(t, err, "import failed")
-
-	// Export and check if same
-	if !bytes.Equal(b.Export(), b_hex) || !bytes.Equal(a.Export(), a_hex) {
-		t.Fatalf("export/import failed")
-	}
-
-	if (len(b.Export()) != b.Size()) || (len(a.Export()) != a.Size()) {
-		t.Fatalf("wrong size of exported keys")
-	}
-}
-
-func testPrivateKeyBelowMax(t testing.TB) {
-	for variant, keySz := range map[KeyVariant]*DomainParams{
-		KeyVariant_SIDH_A: &Params.A,
-		KeyVariant_SIDH_B: &Params.B} {
-
-		func(v KeyVariant, dp *DomainParams) {
-			var blen = int(dp.SecretByteLen)
-			var prv = NewPrivateKey(v)
-
-			// Calculate either (2^e2 - 1) or (2^s - 1); where s=ceil(log_2(3^e3)))
-			maxSecertVal := big.NewInt(int64(dp.SecretBitLen))
-			maxSecertVal.Exp(big.NewInt(int64(2)), maxSecertVal, nil)
-			maxSecertVal.Sub(maxSecertVal, big.NewInt(1))
-
-			// Do same test 1000 times
-			for i := 0; i < 1000; i++ {
-				err := prv.Generate(rand.Reader)
-				checkErr(t, err, "Private key generation")
-
-				// Convert to big-endian, as that's what expected by (*Int)SetBytes()
-				secretBytes := prv.Export()
-				for i := 0; i < int(blen/2); i++ {
-					tmp := secretBytes[i] ^ secretBytes[blen-i-1]
-					secretBytes[i] = tmp ^ secretBytes[i]
-					secretBytes[blen-i-1] = tmp ^ secretBytes[blen-i-1]
-				}
-				prvBig := new(big.Int).SetBytes(secretBytes)
-				// Check if generated key is bigger than acceptable
-				if prvBig.Cmp(maxSecertVal) == 1 {
-					t.Error("Generated private key is wrong")
-				}
-			}
-		}(variant, keySz)
-	}
-}
-
-func testKeyAgreement(t *testing.T, pkA, prA, pkB, prB string) {
-	var e error
-
-	// KeyPairs
-	alicePublic := convToPub(pkA, KeyVariant_SIDH_A)
-	bobPublic := convToPub(pkB, KeyVariant_SIDH_B)
-	alicePrivate := convToPrv(prA, KeyVariant_SIDH_A)
-	bobPrivate := convToPrv(prB, KeyVariant_SIDH_B)
-
-	// Do actual test
-	s1, e := DeriveSecret(bobPrivate, alicePublic)
-	checkErr(t, e, "derivation s1")
-	s2, e := DeriveSecret(alicePrivate, bobPublic)
-	checkErr(t, e, "derivation s1")
-
-	if !bytes.Equal(s1[:], s2[:]) {
-		t.Fatalf("two shared keys: %d, %d do not match", s1, s2)
-	}
-
-	// Negative case
-	dec, e := hex.DecodeString(tdata.PkA_sidh)
-	if e != nil {
-		t.FailNow()
-	}
-	dec[0] = ^dec[0]
-	e = alicePublic.Import(dec)
-	if e != nil {
-		t.FailNow()
-	}
-
-	s1, e = DeriveSecret(bobPrivate, alicePublic)
-	checkErr(t, e, "derivation of s1 failed")
-	s2, e = DeriveSecret(alicePrivate, bobPublic)
-	checkErr(t, e, "derivation of s2 failed")
-
-	if bytes.Equal(s1[:], s2[:]) {
-		t.Fatalf("The two shared keys: %d, %d match", s1, s2)
-	}
-}
-
-func TestDerivationRoundTrip(t *testing.T) {
-	var err error
-
-	prvA := NewPrivateKey(KeyVariant_SIDH_A)
-	prvB := NewPrivateKey(KeyVariant_SIDH_B)
-
-	// Generate private keys
-	err = prvA.Generate(rand.Reader)
-	checkErr(t, err, "key generation failed")
-	err = prvB.Generate(rand.Reader)
-	checkErr(t, err, "key generation failed")
-
-	// Generate public keys
-	pubA := prvA.GeneratePublicKey()
-	pubB := prvB.GeneratePublicKey()
-
-	// Derive shared secret
-	s1, err := DeriveSecret(prvB, pubA)
-	checkErr(t, err, "")
-
-	s2, err := DeriveSecret(prvA, pubB)
-	checkErr(t, err, "")
-
-	if !bytes.Equal(s1[:], s2[:]) {
-		t.Fatalf("Two shared keys: \n%X, \n%X do not match", s1, s2)
-	}
-}
-
-// Encrypt, Decrypt, check if input/output plaintext is the same
-func testPKERoundTrip(t testing.TB, id uint8) {
-	// Message to be encrypted
-	var msg = make([]byte, Params.MsgLen)
-	for i, _ := range msg {
-		msg[i] = byte(i)
-	}
-
-	// Import keys
-	pkB := NewPublicKey(KeyVariant_SIKE)
-	skB := NewPrivateKey(KeyVariant_SIKE)
-	pk_hex, err := hex.DecodeString(tdata.PkB_sike)
-	if err != nil {
-		t.Fatal(err)
-	}
-	sk_hex, err := hex.DecodeString(tdata.PrB_sike)
-	if err != nil {
-		t.Fatal(err)
-	}
-	if pkB.Import(pk_hex) != nil || skB.Import(sk_hex) != nil {
-		t.Error("Import")
-	}
-
-	ct, err := Encrypt(rand.Reader, pkB, msg[:])
-	if err != nil {
-		t.Fatal(err)
-	}
-	pt, err := Decrypt(skB, ct)
-	if err != nil {
-		t.Fatal(err)
-	}
-	if !bytes.Equal(pt[:], msg[:]) {
-		t.Errorf("Decryption failed \n got : %X\n exp : %X", pt, msg)
-	}
-}
-
-// Generate key and check if can encrypt
-func TestPKEKeyGeneration(t *testing.T) {
-	// Message to be encrypted
-	var msg = make([]byte, Params.MsgLen)
-	var err error
-	for i, _ := range msg {
-		msg[i] = byte(i)
-	}
-
-	sk := NewPrivateKey(KeyVariant_SIKE)
-	err = sk.Generate(rand.Reader)
-	checkErr(t, err, "PEK key generation")
-	pk := sk.GeneratePublicKey()
-
-	// Try to encrypt
-	ct, err := Encrypt(rand.Reader, pk, msg[:])
-	checkErr(t, err, "PEK encryption")
-	pt, err := Decrypt(sk, ct)
-	checkErr(t, err, "PEK key decryption")
-
-	if !bytes.Equal(pt[:], msg[:]) {
-		t.Fatalf("Decryption failed \n got : %X\n exp : %X", pt, msg)
-	}
-}
-
-func TestNegativePKE(t *testing.T) {
-	var msg [40]byte
-	var err error
-
-	// Generate key
-	sk := NewPrivateKey(KeyVariant_SIKE)
-	err = sk.Generate(rand.Reader)
-	checkErr(t, err, "key generation")
-
-	pk := sk.GeneratePublicKey()
-
-	// bytelen(msg) - 1
-	ct, err := Encrypt(rand.Reader, pk, msg[:Params.KemSize+8-1])
-	if err == nil {
-		t.Fatal("Error hasn't been returned")
-	}
-	if ct != nil {
-		t.Fatal("Ciphertext must be nil")
-	}
-
-	// KemSize - 1
-	pt, err := Decrypt(sk, msg[:Params.KemSize+8-1])
-	if err == nil {
-		t.Fatal("Error hasn't been returned")
-	}
-	if pt != nil {
-		t.Fatal("Ciphertext must be nil")
-	}
-}
-
-func testKEMRoundTrip(t *testing.T, pkB, skB []byte) {
-	// Import keys
-	pk := NewPublicKey(KeyVariant_SIKE)
-	sk := NewPrivateKey(KeyVariant_SIKE)
-	if pk.Import(pkB) != nil || sk.Import(skB) != nil {
-		t.Error("Import failed")
-	}
-
-	ct, ss_e, err := Encapsulate(rand.Reader, pk)
-	if err != nil {
-		t.Error("Encapsulate failed")
-	}
-
-	ss_d, err := Decapsulate(sk, pk, ct)
-	if err != nil {
-		t.Error("Decapsulate failed")
-	}
-	if !bytes.Equal(ss_e, ss_d) {
-		t.Error("Shared secrets from decapsulation and encapsulation differ")
-	}
-}
-
-func TestKEMRoundTrip(t *testing.T) {
-	pk, err := hex.DecodeString(tdata.PkB_sike)
-	checkErr(t, err, "public key B not a number")
-	sk, err := hex.DecodeString(tdata.PrB_sike)
-	checkErr(t, err, "private key B not a number")
-	testKEMRoundTrip(t, pk, sk)
-}
-
-func TestKEMKeyGeneration(t *testing.T) {
-	// Generate key
-	sk := NewPrivateKey(KeyVariant_SIKE)
-	checkErr(t, sk.Generate(rand.Reader), "error: key generation")
-	pk := sk.GeneratePublicKey()
-
-	// calculated shared secret
-	ct, ss_e, err := Encapsulate(rand.Reader, pk)
-
-	checkErr(t, err, "encapsulation failed")
-	ss_d, err := Decapsulate(sk, pk, ct)
-	checkErr(t, err, "decapsulation failed")
-
-	if !bytes.Equal(ss_e, ss_d) {
-		t.Fatalf("KEM failed \n encapsulated: %X\n decapsulated: %X", ss_d, ss_e)
-	}
-}
-
-func TestNegativeKEM(t *testing.T) {
-	sk := NewPrivateKey(KeyVariant_SIKE)
-	checkErr(t, sk.Generate(rand.Reader), "error: key generation")
-	pk := sk.GeneratePublicKey()
-
-	ct, ss_e, err := Encapsulate(rand.Reader, pk)
-	checkErr(t, err, "pre-requisite for a test failed")
-
-	ct[0] = ct[0] - 1
-	ss_d, err := Decapsulate(sk, pk, ct)
-	checkErr(t, err, "decapsulation returns error when invalid ciphertext provided")
-
-	if bytes.Equal(ss_e, ss_d) {
-		// no idea how this could ever happen, but it would be very bad
-		t.Error("critical error")
-	}
-
-	// Try encapsulating with SIDH key
-	pkSidh := NewPublicKey(KeyVariant_SIDH_B)
-	prSidh := NewPrivateKey(KeyVariant_SIDH_B)
-	_, _, err = Encapsulate(rand.Reader, pkSidh)
-	if err == nil {
-		t.Error("encapsulation accepts SIDH public key")
-	}
-	// Try decapsulating with SIDH key
-	_, err = Decapsulate(prSidh, pk, ct)
-	if err == nil {
-		t.Error("decapsulation accepts SIDH private key key")
-	}
-}
-
-// In case invalid ciphertext is provided, SIKE's decapsulation must
-// return same (but unpredictable) result for a given key.
-func TestNegativeKEMSameWrongResult(t *testing.T) {
-	sk := NewPrivateKey(KeyVariant_SIKE)
-	checkErr(t, sk.Generate(rand.Reader), "error: key generation")
-	pk := sk.GeneratePublicKey()
-
-	ct, encSs, err := Encapsulate(rand.Reader, pk)
-	checkErr(t, err, "pre-requisite for a test failed")
-
-	// make ciphertext wrong
-	ct[0] = ct[0] - 1
-	decSs1, err := Decapsulate(sk, pk, ct)
-	checkErr(t, err, "pre-requisite for a test failed")
-
-	// second decapsulation must be done with same, but imported private key
-	expSk := sk.Export()
-
-	// creat new private key
-	sk = NewPrivateKey(KeyVariant_SIKE)
-	err = sk.Import(expSk)
-	checkErr(t, err, "import failed")
-
-	// try decapsulating again. ss2 must be same as ss1 and different than
-	// original plaintext
-	decSs2, err := Decapsulate(sk, pk, ct)
-	checkErr(t, err, "pre-requisite for a test failed")
-
-	if !bytes.Equal(decSs1, decSs2) {
-		t.Error("decapsulation is insecure")
-	}
-
-	if bytes.Equal(encSs, decSs1) || bytes.Equal(encSs, decSs2) {
-		// this test requires that decapsulation returns wrong result
-		t.Errorf("test implementation error")
-	}
-}
-
-func readAndCheckLine(r *bufio.Reader) []byte {
-	// Read next line from buffer
-	line, isPrefix, err := r.ReadLine()
-	if err != nil || isPrefix {
-		panic("Wrong format of input file")
-	}
-
-	// Function expects that line is in format "KEY = HEX_VALUE". Get
-	// value, which should be a hex string
-	hexst := strings.Split(string(line), "=")[1]
-	hexst = strings.TrimSpace(hexst)
-	// Convert value to byte string
-	ret, err := hex.DecodeString(hexst)
-	if err != nil {
-		panic("Wrong format of input file")
-	}
-	return ret
-}
-
-func testKeygenSIKE(pk, sk []byte, id uint8) bool {
-	// Import provided private key
-	var prvKey = NewPrivateKey(KeyVariant_SIKE)
-	if prvKey.Import(sk) != nil {
-		panic("sike test: can't load KAT")
-	}
-
-	// Generate public key
-	pubKey := prvKey.GeneratePublicKey()
-	return bytes.Equal(pubKey.Export(), pk)
-}
-
-func testDecapsulation(pk, sk, ct, ssExpected []byte, id uint8) bool {
-	var pubKey = NewPublicKey(KeyVariant_SIKE)
-	var prvKey = NewPrivateKey(KeyVariant_SIKE)
-	if pubKey.Import(pk) != nil || prvKey.Import(sk) != nil {
-		panic("sike test: can't load KAT")
-	}
-
-	ssGot, err := Decapsulate(prvKey, pubKey, ct)
-	if err != nil {
-		panic("sike test: can't perform degcapsulation KAT")
-	}
-
-	return bytes.Equal(ssGot, ssExpected)
-}
-
-func TestKeyAgreement(t *testing.T) {
-	testKeyAgreement(t, tdata.PkA_sidh, tdata.PrA_sidh, tdata.PkB_sidh, tdata.PrB_sidh)
-}
-
-// Same values as in sike_test.cc
-func TestDecapsulation(t *testing.T) {
-	var sk = [16 + 28]byte{
-		0x04, 0x5E, 0x01, 0x42, 0xB8, 0x2F, 0xE1, 0x9A, 0x38, 0x25,
-		0x92, 0xE7, 0xDC, 0xBA, 0xF7, 0x1B, 0xB1, 0xFD, 0x34, 0x42,
-		0xDB, 0x02, 0xBC, 0x9D, 0x4C, 0xD0, 0x72, 0x34, 0x4D, 0xBD,
-		0x06, 0xDF, 0x1C, 0x7D, 0x0A, 0x88, 0xB2, 0x50, 0xC4, 0xF6,
-		0xAE, 0xE8, 0x25, 0x01,
-	}
-
-	var pk = [330]byte{
-		0x6D, 0x8D, 0xF5, 0x7B, 0xCD, 0x47, 0xCA, 0xCB, 0x7A, 0x38,
-		0xB7, 0xA6, 0x90, 0xB7, 0x37, 0x03, 0xD4, 0x6F, 0x27, 0x73,
-		0x74, 0x17, 0x5A, 0xA4, 0x0D, 0xC6, 0x81, 0xAD, 0xDB, 0xF7,
-		0x18, 0xB2, 0x3C, 0x30, 0xCF, 0xAA, 0x08, 0x11, 0x91, 0xCC,
-		0x27, 0x4E, 0xF1, 0xA6, 0xB7, 0xDA, 0xD2, 0xCF, 0x99, 0x7F,
-		0xF7, 0xE1, 0xD0, 0xCE, 0x00, 0xD2, 0x4B, 0xA4, 0x33, 0xB4,
-		0x87, 0x01, 0x3F, 0x02, 0xF7, 0xF9, 0xDE, 0xC3, 0x60, 0x62,
-		0xDA, 0x3F, 0x74, 0xA9, 0x44, 0xBE, 0x19, 0xD5, 0x03, 0x2A,
-		0x79, 0x8C, 0xA7, 0xFF, 0xEA, 0xB3, 0xBB, 0xB5, 0xD4, 0x1D,
-		0x8F, 0x92, 0xCE, 0x62, 0x6E, 0x99, 0x24, 0xD7, 0x57, 0xFA,
-		0xCD, 0xB6, 0xE2, 0x8E, 0xFD, 0x22, 0x0E, 0x31, 0x21, 0x01,
-		0x8D, 0x79, 0xF8, 0x3E, 0x27, 0xEC, 0x43, 0x40, 0xDB, 0x82,
-		0xE5, 0xEB, 0x6C, 0x97, 0x66, 0x29, 0x15, 0x68, 0xB7, 0x4D,
-		0x84, 0xD1, 0x8A, 0x0B, 0x12, 0x36, 0x2C, 0x0C, 0x0A, 0x6E,
-		0x4E, 0xDE, 0xA5, 0x8A, 0xDE, 0x77, 0xDD, 0x70, 0x49, 0x73,
-		0xAC, 0x27, 0x6D, 0x8D, 0x25, 0x9A, 0xE4, 0x25, 0xE8, 0x95,
-		0x8F, 0xFE, 0x90, 0x3B, 0x00, 0x69, 0x20, 0xE8, 0x7C, 0xA5,
-		0xF5, 0x79, 0xC0, 0x61, 0x51, 0x91, 0x35, 0x25, 0x3F, 0x17,
-		0x2F, 0x70, 0x73, 0xF0, 0x89, 0xB5, 0xC8, 0x25, 0xB8, 0xE5,
-		0x7E, 0x34, 0xDD, 0x11, 0xE5, 0xD6, 0xC3, 0xD5, 0x29, 0x89,
-		0xC6, 0x2C, 0x99, 0x53, 0x1D, 0x2C, 0x77, 0xB0, 0xB6, 0xA1,
-		0xBD, 0x79, 0xFB, 0x4A, 0xC2, 0x48, 0x4C, 0x62, 0x51, 0x00,
-		0xE3, 0x91, 0x2A, 0xCB, 0x84, 0x03, 0x5D, 0x2D, 0xC8, 0x33,
-		0xE9, 0x14, 0xBF, 0x74, 0x21, 0xBC, 0xF4, 0x76, 0xE5, 0x42,
-		0xB8, 0xBD, 0xE2, 0xE7, 0x20, 0x95, 0x54, 0xF2, 0xED, 0xC0,
-		0x79, 0x38, 0x1E, 0xD2, 0xEA, 0x1A, 0x63, 0x85, 0xE7, 0x3A,
-		0xDA, 0xAD, 0xAB, 0x1B, 0x1E, 0x19, 0x9E, 0x73, 0xD0, 0x10,
-		0x2E, 0x38, 0xAC, 0x8B, 0x00, 0x6A, 0x30, 0x2C, 0x3D, 0x70,
-		0x8E, 0x39, 0x6D, 0xC0, 0x12, 0x61, 0x7D, 0x2A, 0x0A, 0x04,
-		0x95, 0x8E, 0x09, 0x3C, 0x7B, 0xEC, 0x2E, 0xBC, 0xE8, 0xE8,
-		0xE8, 0x37, 0x29, 0xC4, 0x7E, 0x76, 0x48, 0xB9, 0x3B, 0x72,
-		0xE5, 0x99, 0x9B, 0xF9, 0xE3, 0x99, 0x72, 0x3F, 0x35, 0x29,
-		0x85, 0xE0, 0xC8, 0xBF, 0xB1, 0x6B, 0xB1, 0x6E, 0x72, 0x00,
-	}
-
-	var ct = [330 + 16]byte{
-		0xFF, 0xEB, 0xEF, 0x4A, 0xC0, 0x57, 0x0F, 0x26, 0xAC, 0x76,
-		0xA8, 0xB0, 0xA3, 0x5D, 0x9C, 0xD9, 0x25, 0xD1, 0x7F, 0x92,
-		0x5D, 0xF4, 0x23, 0x34, 0xC3, 0x03, 0x10, 0xE1, 0xB0, 0x24,
-		0x9B, 0x44, 0x58, 0x26, 0x13, 0x56, 0x83, 0x43, 0x72, 0x69,
-		0x28, 0x0D, 0x55, 0x07, 0x1F, 0xDB, 0xC0, 0x23, 0x34, 0x83,
-		0x1A, 0x09, 0x9B, 0x80, 0x00, 0x64, 0x56, 0xDC, 0x79, 0x7A,
-		0xD2, 0xCE, 0x23, 0xC9, 0x72, 0x27, 0xFC, 0x8D, 0xAB, 0xBF,
-		0xD3, 0x17, 0xF6, 0x91, 0x7B, 0x15, 0x93, 0x83, 0x8A, 0x4F,
-		0x6C, 0xCA, 0x4A, 0x94, 0xDA, 0xC7, 0x9D, 0xB6, 0xD6, 0xBA,
-		0xBD, 0x81, 0x9A, 0x78, 0xE5, 0xE5, 0xBE, 0x17, 0xBC, 0xCB,
-		0xC8, 0x23, 0x80, 0x5F, 0x75, 0xF8, 0xDB, 0x51, 0x55, 0x00,
-		0x25, 0x33, 0x52, 0x64, 0xB2, 0xD6, 0xD8, 0x9A, 0x2A, 0x9E,
-		0x29, 0x99, 0x13, 0x33, 0xE2, 0xA7, 0x98, 0xAC, 0xD7, 0x79,
-		0x5C, 0x2F, 0xBA, 0x07, 0xC3, 0x03, 0x37, 0xD6, 0xE6, 0xB5,
-		0xA1, 0xF5, 0x29, 0xB6, 0xF6, 0xC0, 0x5C, 0x44, 0x68, 0x2B,
-		0x0B, 0xF5, 0x00, 0x01, 0x44, 0xD5, 0xCC, 0x23, 0xB5, 0x27,
-		0x4F, 0xCA, 0xB4, 0x05, 0x01, 0xF9, 0xD4, 0x41, 0xE0, 0xE1,
-		0x1E, 0xCF, 0xA9, 0xBC, 0x79, 0xD7, 0xD5, 0xF5, 0x3C, 0xE6,
-		0x93, 0xF4, 0x6C, 0x84, 0x5A, 0x2C, 0x4B, 0xE4, 0x91, 0xB2,
-		0xB2, 0xB8, 0xAD, 0x74, 0x9A, 0x69, 0x79, 0x4C, 0x84, 0xB7,
-		0xBF, 0xF1, 0x68, 0x4B, 0xAE, 0x0F, 0x7F, 0x45, 0x3B, 0x18,
-		0x3F, 0xFA, 0x00, 0x48, 0xE0, 0x3A, 0xE2, 0xC0, 0xAE, 0x00,
-		0xCE, 0x90, 0x28, 0xA4, 0x1B, 0xBE, 0xCA, 0x0C, 0x21, 0x29,
-		0x64, 0x30, 0x5E, 0x35, 0xAD, 0xFD, 0x83, 0x47, 0x40, 0x6D,
-		0x15, 0x56, 0xFC, 0xF8, 0x5F, 0xAB, 0x81, 0xFE, 0x6B, 0xE9,
-		0x6B, 0xED, 0x27, 0x35, 0x7C, 0xD8, 0x2C, 0xD4, 0xF2, 0x11,
-		0xE6, 0xAF, 0xDF, 0xB8, 0x91, 0x96, 0xEB, 0xF7, 0x4C, 0x8D,
-		0x70, 0x77, 0x90, 0x81, 0x00, 0x09, 0x19, 0x27, 0x8A, 0x9E,
-		0xB6, 0x1A, 0xE9, 0xAC, 0x6C, 0xC9, 0xF8, 0xEA, 0xA2, 0x34,
-		0xB8, 0xAC, 0xB3, 0xB3, 0x68, 0xA1, 0xB7, 0x29, 0x55, 0xCA,
-		0x40, 0x23, 0x92, 0x5C, 0x0C, 0x79, 0x6B, 0xD6, 0x9F, 0x5B,
-		0xD2, 0xE6, 0xAE, 0x04, 0xCB, 0xEC, 0xC7, 0x88, 0x18, 0xDB,
-		0x7A, 0xE6, 0xD6, 0xC9, 0x39, 0xFD, 0x93, 0x9B, 0xC8, 0x01,
-		0x6F, 0x3E, 0x6C, 0x90, 0x3E, 0x73, 0x76, 0x99, 0x7C, 0x48,
-		0xDA, 0x68, 0x48, 0x80, 0x2B, 0x63,
-	}
-	var ssExp = [16]byte{
-		0xA1, 0xF9, 0x5A, 0x67, 0xB9, 0x3D, 0x1E, 0x72, 0xE8, 0xC5,
-		0x71, 0xF1, 0x4C, 0xB2, 0xAA, 0x6D,
-	}
-
-	var prvObj = NewPrivateKey(KeyVariant_SIKE)
-	var pubObj = NewPublicKey(KeyVariant_SIKE)
-
-	if pubObj.Import(pk[:]) != nil || prvObj.Import(sk[:]) != nil {
-		t.Error("Can't import one of the keys")
-	}
-
-	res, _ := Decapsulate(prvObj, pubObj, ct[:])
-	if !bytes.Equal(ssExp[:], res) {
-		t.Error("Wrong decapsulation result")
-	}
-}
-
-/* -------------------------------------------------------------------------
-   Benchmarking
-   -------------------------------------------------------------------------*/
-
-func BenchmarkSidhKeyAgreement(b *testing.B) {
-	// KeyPairs
-	alicePublic := convToPub(tdata.PkA_sidh, KeyVariant_SIDH_A)
-	alicePrivate := convToPrv(tdata.PrA_sidh, KeyVariant_SIDH_A)
-	bobPublic := convToPub(tdata.PkB_sidh, KeyVariant_SIDH_B)
-	bobPrivate := convToPrv(tdata.PrB_sidh, KeyVariant_SIDH_B)
-
-	for i := 0; i < b.N; i++ {
-		// Derive shared secret
-		DeriveSecret(bobPrivate, alicePublic)
-		DeriveSecret(alicePrivate, bobPublic)
-	}
-}
-
-func BenchmarkAliceKeyGenPrv(b *testing.B) {
-	prv := NewPrivateKey(KeyVariant_SIDH_A)
-	for n := 0; n < b.N; n++ {
-		prv.Generate(rand.Reader)
-	}
-}
-
-func BenchmarkBobKeyGenPrv(b *testing.B) {
-	prv := NewPrivateKey(KeyVariant_SIDH_B)
-	for n := 0; n < b.N; n++ {
-		prv.Generate(rand.Reader)
-	}
-}
-
-func BenchmarkAliceKeyGenPub(b *testing.B) {
-	prv := NewPrivateKey(KeyVariant_SIDH_A)
-	prv.Generate(rand.Reader)
-	for n := 0; n < b.N; n++ {
-		prv.GeneratePublicKey()
-	}
-}
-
-func BenchmarkBobKeyGenPub(b *testing.B) {
-	prv := NewPrivateKey(KeyVariant_SIDH_B)
-	prv.Generate(rand.Reader)
-	for n := 0; n < b.N; n++ {
-		prv.GeneratePublicKey()
-	}
-}
-
-func BenchmarkSharedSecretAlice(b *testing.B) {
-	aPr := convToPrv(tdata.PrA_sidh, KeyVariant_SIDH_A)
-	bPk := convToPub(tdata.PkB_sike, KeyVariant_SIDH_B)
-	for n := 0; n < b.N; n++ {
-		DeriveSecret(aPr, bPk)
-	}
-}
-
-func BenchmarkSharedSecretBob(b *testing.B) {
-	// m_B = 3*randint(0,3^238)
-	aPk := convToPub(tdata.PkA_sidh, KeyVariant_SIDH_A)
-	bPr := convToPrv(tdata.PrB_sidh, KeyVariant_SIDH_B)
-	for n := 0; n < b.N; n++ {
-		DeriveSecret(bPr, aPk)
-	}
-}
diff --git a/ssl/test/test_config.cc b/ssl/test/test_config.cc
index 8d8a068..6313673 100644
--- a/ssl/test/test_config.cc
+++ b/ssl/test/test_config.cc
@@ -1611,9 +1611,6 @@
         case SSL_CURVE_CECPQ2:
           nids.push_back(NID_CECPQ2);
           break;
-        case SSL_CURVE_CECPQ2b:
-          nids.push_back(NID_CECPQ2b);
-          break;
       }
       if (!SSL_set1_curves(ssl.get(), &nids[0], nids.size())) {
         return nullptr;
@@ -1622,8 +1619,8 @@
   }
   if (enable_all_curves) {
     static const int kAllCurves[] = {
-        NID_secp224r1, NID_X9_62_prime256v1, NID_secp384r1, NID_secp521r1,
-        NID_X25519,    NID_CECPQ2,           NID_CECPQ2b,
+        NID_secp224r1, NID_X9_62_prime256v1, NID_secp384r1,
+        NID_secp521r1, NID_X25519,           NID_CECPQ2,
     };
     if (!SSL_set1_curves(ssl.get(), kAllCurves,
                          OPENSSL_ARRAY_SIZE(kAllCurves))) {