Drop CECPQ2 support.
HRSS itself remains in libcrypto because there are some direct users of
it. But this will let it be dropped by the linker in many cases.
Change-Id: I870eda30c9ed1d08693c770e9e7df45a2711b7df
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/58645
Commit-Queue: Adam Langley <agl@google.com>
Reviewed-by: David Benjamin <davidben@google.com>
Reviewed-by: Adam Langley <agl@google.com>
diff --git a/crypto/obj/obj_dat.h b/crypto/obj/obj_dat.h
index d879233..7cd1153 100644
--- a/crypto/obj/obj_dat.h
+++ b/crypto/obj/obj_dat.h
@@ -8777,7 +8777,7 @@
{"AuthPSK", "auth-psk", NID_auth_psk, 0, NULL, 0},
{"KxANY", "kx-any", NID_kx_any, 0, NULL, 0},
{"AuthANY", "auth-any", NID_auth_any, 0, NULL, 0},
- {"CECPQ2", "CECPQ2", NID_CECPQ2, 0, NULL, 0},
+ {NULL, NULL, NID_undef, 0, NULL, 0},
{"ED448", "ED448", NID_ED448, 3, &kObjectData[6181], 0},
{"X448", "X448", NID_X448, 3, &kObjectData[6184], 0},
{"SHA512-256", "sha512-256", NID_sha512_256, 9, &kObjectData[6187], 0},
@@ -8846,7 +8846,6 @@
110 /* CAST5-CFB */,
109 /* CAST5-ECB */,
111 /* CAST5-OFB */,
- 959 /* CECPQ2 */,
894 /* CMAC */,
13 /* CN */,
141 /* CRLReason */,
@@ -9758,7 +9757,6 @@
285 /* Biometric Info */,
179 /* CA Issuers */,
785 /* CA Repository */,
- 959 /* CECPQ2 */,
131 /* Code Signing */,
783 /* Diffie-Hellman based MAC */,
382 /* Directory */,
diff --git a/crypto/obj/obj_mac.num b/crypto/obj/obj_mac.num
index c0473bc..583f6e3 100644
--- a/crypto/obj/obj_mac.num
+++ b/crypto/obj/obj_mac.num
@@ -947,7 +947,6 @@
auth_psk 956
kx_any 957
auth_any 958
-CECPQ2 959
ED448 960
X448 961
sha512_256 962
diff --git a/crypto/obj/objects.txt b/crypto/obj/objects.txt
index 11151f9..cad6a3b 100644
--- a/crypto/obj/objects.txt
+++ b/crypto/obj/objects.txt
@@ -1333,7 +1333,6 @@
: dh-cofactor-kdf
# NIDs for post quantum key agreements (no corresponding OIDs).
- : CECPQ2
: X25519Kyber768
: P256Kyber768
: P384Kyber768
diff --git a/include/openssl/nid.h b/include/openssl/nid.h
index cf5691d..64c9c9c 100644
--- a/include/openssl/nid.h
+++ b/include/openssl/nid.h
@@ -4235,9 +4235,6 @@
#define LN_auth_any "auth-any"
#define NID_auth_any 958
-#define SN_CECPQ2 "CECPQ2"
-#define NID_CECPQ2 959
-
#define SN_ED448 "ED448"
#define NID_ED448 960
#define OBJ_ED448 1L, 3L, 101L, 113L
diff --git a/include/openssl/ssl.h b/include/openssl/ssl.h
index 68253bd..da78d1a 100644
--- a/include/openssl/ssl.h
+++ b/include/openssl/ssl.h
@@ -2334,7 +2334,6 @@
#define SSL_CURVE_SECP384R1 24
#define SSL_CURVE_SECP521R1 25
#define SSL_CURVE_X25519 29
-#define SSL_CURVE_CECPQ2 16696
#define SSL_CURVE_X25519KYBER768 0x6399
#define SSL_CURVE_P256KYBER768 0xfe32
diff --git a/ssl/extensions.cc b/ssl/extensions.cc
index ba92360..4d9651b 100644
--- a/ssl/extensions.cc
+++ b/ssl/extensions.cc
@@ -206,7 +206,6 @@
static bool is_post_quantum_group(uint16_t id) {
switch (id) {
- case SSL_CURVE_CECPQ2:
case SSL_CURVE_X25519KYBER768:
case SSL_CURVE_P256KYBER768:
return true;
@@ -414,7 +413,7 @@
bool tls1_check_group_id(const SSL_HANDSHAKE *hs, uint16_t group_id) {
if (is_post_quantum_group(group_id) &&
ssl_protocol_version(hs->ssl) < TLS1_3_VERSION) {
- // CECPQ2(b) requires TLS 1.3.
+ // Post-quantum "groups" require TLS 1.3.
return false;
}
diff --git a/ssl/ssl_key_share.cc b/ssl/ssl_key_share.cc
index 5741c6b..8885246 100644
--- a/ssl/ssl_key_share.cc
+++ b/ssl/ssl_key_share.cc
@@ -192,101 +192,6 @@
uint8_t private_key_[32];
};
-class CECPQ2KeyShare : public SSLKeyShare {
- public:
- CECPQ2KeyShare() {}
-
- uint16_t GroupID() const override { return SSL_CURVE_CECPQ2; }
-
- bool Generate(CBB *out) override {
- uint8_t x25519_public_key[32];
- X25519_keypair(x25519_public_key, x25519_private_key_);
-
- uint8_t hrss_entropy[HRSS_GENERATE_KEY_BYTES];
- HRSS_public_key hrss_public_key;
- RAND_bytes(hrss_entropy, sizeof(hrss_entropy));
- if (!HRSS_generate_key(&hrss_public_key, &hrss_private_key_,
- hrss_entropy)) {
- return false;
- }
-
- uint8_t hrss_public_key_bytes[HRSS_PUBLIC_KEY_BYTES];
- HRSS_marshal_public_key(hrss_public_key_bytes, &hrss_public_key);
-
- if (!CBB_add_bytes(out, x25519_public_key, sizeof(x25519_public_key)) ||
- !CBB_add_bytes(out, hrss_public_key_bytes,
- sizeof(hrss_public_key_bytes))) {
- return false;
- }
-
- return true;
- }
-
- bool Encap(CBB *out_ciphertext, Array<uint8_t> *out_secret,
- uint8_t *out_alert, Span<const uint8_t> peer_key) override {
- Array<uint8_t> secret;
- if (!secret.Init(32 + HRSS_KEY_BYTES)) {
- return false;
- }
-
- uint8_t x25519_public_key[32];
- X25519_keypair(x25519_public_key, x25519_private_key_);
-
- HRSS_public_key peer_public_key;
- if (peer_key.size() != 32 + HRSS_PUBLIC_KEY_BYTES ||
- !HRSS_parse_public_key(&peer_public_key, peer_key.data() + 32) ||
- !X25519(secret.data(), x25519_private_key_, peer_key.data())) {
- *out_alert = SSL_AD_DECODE_ERROR;
- OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ECPOINT);
- return false;
- }
-
- uint8_t ciphertext[HRSS_CIPHERTEXT_BYTES];
- uint8_t entropy[HRSS_ENCAP_BYTES];
- RAND_bytes(entropy, sizeof(entropy));
-
- if (!HRSS_encap(ciphertext, secret.data() + 32, &peer_public_key,
- entropy) ||
- !CBB_add_bytes(out_ciphertext, x25519_public_key,
- sizeof(x25519_public_key)) ||
- !CBB_add_bytes(out_ciphertext, ciphertext, sizeof(ciphertext))) {
- return false;
- }
-
- *out_secret = std::move(secret);
- return true;
- }
-
- bool Decap(Array<uint8_t> *out_secret, uint8_t *out_alert,
- Span<const uint8_t> ciphertext) override {
- *out_alert = SSL_AD_INTERNAL_ERROR;
-
- Array<uint8_t> secret;
- if (!secret.Init(32 + HRSS_KEY_BYTES)) {
- return false;
- }
-
- if (ciphertext.size() != 32 + HRSS_CIPHERTEXT_BYTES ||
- !X25519(secret.data(), x25519_private_key_, ciphertext.data())) {
- *out_alert = SSL_AD_DECODE_ERROR;
- OPENSSL_PUT_ERROR(SSL, SSL_R_BAD_ECPOINT);
- return false;
- }
-
- if (!HRSS_decap(secret.data() + 32, &hrss_private_key_,
- ciphertext.data() + 32, ciphertext.size() - 32)) {
- return false;
- }
-
- *out_secret = std::move(secret);
- return true;
- }
-
- private:
- uint8_t x25519_private_key_[32];
- HRSS_private_key hrss_private_key_;
-};
-
class X25519Kyber768KeyShare : public SSLKeyShare {
public:
X25519Kyber768KeyShare() {}
@@ -405,7 +310,6 @@
{NID_secp384r1, SSL_CURVE_SECP384R1, "P-384", "secp384r1"},
{NID_secp521r1, SSL_CURVE_SECP521R1, "P-521", "secp521r1"},
{NID_X25519, SSL_CURVE_X25519, "X25519", "x25519"},
- {NID_CECPQ2, SSL_CURVE_CECPQ2, "CECPQ2", "CECPQ2"},
{NID_X25519Kyber768, SSL_CURVE_X25519KYBER768, "X25519KYBER",
"X25519Kyber"},
{NID_P256Kyber768, SSL_CURVE_P256KYBER768, "P256KYBER", "P256Kyber"},
@@ -429,8 +333,6 @@
return MakeUnique<ECKeyShare>(NID_secp521r1, SSL_CURVE_SECP521R1);
case SSL_CURVE_X25519:
return MakeUnique<X25519KeyShare>();
- case SSL_CURVE_CECPQ2:
- return MakeUnique<CECPQ2KeyShare>();
case SSL_CURVE_X25519KYBER768:
return MakeUnique<X25519Kyber768KeyShare>();
case SSL_CURVE_P256KYBER768:
diff --git a/ssl/ssl_test.cc b/ssl/ssl_test.cc
index 85c06a5..854068f 100644
--- a/ssl/ssl_test.cc
+++ b/ssl/ssl_test.cc
@@ -401,8 +401,8 @@
{ SSL_CURVE_SECP256R1 },
},
{
- "P-256:CECPQ2",
- { SSL_CURVE_SECP256R1, SSL_CURVE_CECPQ2 },
+ "P-256:X25519KYBER",
+ { SSL_CURVE_SECP256R1, SSL_CURVE_X25519KYBER768 },
},
{
diff --git a/ssl/test/fuzzer.h b/ssl/test/fuzzer.h
index 00b5e84..8f73fc0 100644
--- a/ssl/test/fuzzer.h
+++ b/ssl/test/fuzzer.h
@@ -418,8 +418,9 @@
return false;
}
- static const int kCurves[] = {NID_CECPQ2, NID_X25519, NID_X9_62_prime256v1,
- NID_secp384r1, NID_secp521r1};
+ static const int kCurves[] = {NID_X25519Kyber768, NID_X25519,
+ NID_X9_62_prime256v1, NID_secp384r1,
+ NID_secp521r1};
if (!SSL_CTX_set1_curves(ctx_.get(), kCurves,
OPENSSL_ARRAY_SIZE(kCurves))) {
return false;
diff --git a/ssl/test/runner/common.go b/ssl/test/runner/common.go
index 3854283..ce06779 100644
--- a/ssl/test/runner/common.go
+++ b/ssl/test/runner/common.go
@@ -148,12 +148,12 @@
type CurveID uint16
const (
- CurveP224 CurveID = 21
- CurveP256 CurveID = 23
- CurveP384 CurveID = 24
- CurveP521 CurveID = 25
- CurveX25519 CurveID = 29
- CurveCECPQ2 CurveID = 16696
+ CurveP224 CurveID = 21
+ CurveP256 CurveID = 23
+ CurveP384 CurveID = 24
+ CurveP521 CurveID = 25
+ CurveX25519 CurveID = 29
+ CurveX25519Kyber768 CurveID = 0x6399
)
// TLS Elliptic Curve Point Formats
@@ -1890,9 +1890,9 @@
// hello retry.
FailIfHelloRetryRequested bool
- // FailedIfCECPQ2Offered will cause a server to reject a ClientHello if CECPQ2
+ // FailedIfKyberOffered will cause a server to reject a ClientHello if Kyber
// is supported.
- FailIfCECPQ2Offered bool
+ FailIfKyberOffered bool
// ExpectKeyShares, if not nil, lists (in order) the curves that a ClientHello
// should have key shares for.
@@ -1996,7 +1996,7 @@
return ret
}
-var defaultCurvePreferences = []CurveID{CurveCECPQ2, CurveX25519, CurveP256, CurveP384, CurveP521}
+var defaultCurvePreferences = []CurveID{CurveX25519, CurveP256, CurveP384, CurveP521}
func (c *Config) curvePreferences() []CurveID {
if c == nil || len(c.CurvePreferences) == 0 {
diff --git a/ssl/test/runner/handshake_server.go b/ssl/test/runner/handshake_server.go
index de297a6..4f3cf75 100644
--- a/ssl/test/runner/handshake_server.go
+++ b/ssl/test/runner/handshake_server.go
@@ -280,10 +280,10 @@
}
}
- if config.Bugs.FailIfCECPQ2Offered {
+ if config.Bugs.FailIfKyberOffered {
for _, offeredCurve := range hs.clientHello.supportedCurves {
if isPqGroup(offeredCurve) {
- return errors.New("tls: CECPQ2 was offered")
+ return errors.New("tls: X25519Kyber768 was offered")
}
}
}
@@ -1467,7 +1467,7 @@
Curves:
for _, curve := range hs.clientHello.supportedCurves {
if isPqGroup(curve) && c.vers < VersionTLS13 {
- // CECPQ2 is TLS 1.3-only.
+ // Post-quantum is TLS 1.3 only.
continue
}
diff --git a/ssl/test/runner/hrss/hrss.go b/ssl/test/runner/hrss/hrss.go
deleted file mode 100644
index 9f4fdd7..0000000
--- a/ssl/test/runner/hrss/hrss.go
+++ /dev/null
@@ -1,1212 +0,0 @@
-package hrss
-
-import (
- "crypto/hmac"
- "crypto/sha256"
- "crypto/subtle"
- "encoding/binary"
- "io"
- "math/bits"
-)
-
-const (
- PublicKeySize = modQBytes
- CiphertextSize = modQBytes
-)
-
-const (
- N = 701
- Q = 8192
- mod3Bytes = 140
- modQBytes = 1138
-)
-
-const (
- bitsPerWord = bits.UintSize
- wordsPerPoly = (N + bitsPerWord - 1) / bitsPerWord
- fullWordsPerPoly = N / bitsPerWord
- bitsInLastWord = N % bitsPerWord
-)
-
-// poly3 represents a degree-N polynomial over GF(3). Each coefficient is
-// bitsliced across the |s| and |a| arrays, like this:
-//
-// s | a | value
-// -----------------
-// 0 | 0 | 0
-// 0 | 1 | 1
-// 1 | 0 | 2 (aka -1)
-// 1 | 1 | <invalid>
-//
-// ('s' is for sign, and 'a' is just a letter.)
-//
-// Once bitsliced as such, the following circuits can be used to implement
-// addition and multiplication mod 3:
-//
-// (s3, a3) = (s1, a1) × (s2, a2)
-// s3 = (s2 ∧ a1) ⊕ (s1 ∧ a2)
-// a3 = (s1 ∧ s2) ⊕ (a1 ∧ a2)
-//
-// (s3, a3) = (s1, a1) + (s2, a2)
-// t1 = ~(s1 ∨ a1)
-// t2 = ~(s2 ∨ a2)
-// s3 = (a1 ∧ a2) ⊕ (t1 ∧ s2) ⊕ (t2 ∧ s1)
-// a3 = (s1 ∧ s2) ⊕ (t1 ∧ a2) ⊕ (t2 ∧ a1)
-//
-// Negating a value just involves swapping s and a.
-type poly3 struct {
- s [wordsPerPoly]uint
- a [wordsPerPoly]uint
-}
-
-func (p *poly3) trim() {
- p.s[wordsPerPoly-1] &= (1 << bitsInLastWord) - 1
- p.a[wordsPerPoly-1] &= (1 << bitsInLastWord) - 1
-}
-
-func (p *poly3) zero() {
- for i := range p.a {
- p.s[i] = 0
- p.a[i] = 0
- }
-}
-
-func (p *poly3) fromDiscrete(in *poly) {
- var shift uint
- s := p.s[:]
- a := p.a[:]
- s[0] = 0
- a[0] = 0
-
- for _, v := range in {
- s[0] >>= 1
- s[0] |= uint((v>>1)&1) << (bitsPerWord - 1)
- a[0] >>= 1
- a[0] |= uint(v&1) << (bitsPerWord - 1)
- shift++
- if shift == bitsPerWord {
- s = s[1:]
- a = a[1:]
- s[0] = 0
- a[0] = 0
- shift = 0
- }
- }
-
- a[0] >>= bitsPerWord - shift
- s[0] >>= bitsPerWord - shift
-}
-
-func (p *poly3) fromModQ(in *poly) int {
- var shift uint
- s := p.s[:]
- a := p.a[:]
- s[0] = 0
- a[0] = 0
- ok := 1
-
- for _, v := range in {
- vMod3, vOk := modQToMod3(v)
- ok &= vOk
-
- s[0] >>= 1
- s[0] |= uint((vMod3>>1)&1) << (bitsPerWord - 1)
- a[0] >>= 1
- a[0] |= uint(vMod3&1) << (bitsPerWord - 1)
- shift++
- if shift == bitsPerWord {
- s = s[1:]
- a = a[1:]
- s[0] = 0
- a[0] = 0
- shift = 0
- }
- }
-
- a[0] >>= bitsPerWord - shift
- s[0] >>= bitsPerWord - shift
-
- return ok
-}
-
-func (p *poly3) fromDiscreteMod3(in *poly) {
- var shift uint
- s := p.s[:]
- a := p.a[:]
- s[0] = 0
- a[0] = 0
-
- for _, v := range in {
- // This duplicates the 13th bit upwards to the top of the
- // uint16, essentially treating it as a sign bit and converting
- // into a signed int16. The signed value is reduced mod 3,
- // yeilding {-2, -1, 0, 1, 2}.
- v = uint16((int16(v<<3)>>3)%3) & 7
-
- // We want to map v thus:
- // {-2, -1, 0, 1, 2} -> {1, 2, 0, 1, 2}. We take the bottom
- // three bits and then the constants below, when shifted by
- // those three bits, perform the required mapping.
- s[0] >>= 1
- s[0] |= (0xbc >> v) << (bitsPerWord - 1)
- a[0] >>= 1
- a[0] |= (0x7a >> v) << (bitsPerWord - 1)
- shift++
- if shift == bitsPerWord {
- s = s[1:]
- a = a[1:]
- s[0] = 0
- a[0] = 0
- shift = 0
- }
- }
-
- a[0] >>= bitsPerWord - shift
- s[0] >>= bitsPerWord - shift
-}
-
-func (p *poly3) marshal(out []byte) {
- s := p.s[:]
- a := p.a[:]
- sw := s[0]
- aw := a[0]
- var shift int
-
- for i := 0; i < 700; i += 5 {
- acc, scale := 0, 1
- for j := 0; j < 5; j++ {
- v := int(aw&1) | int(sw&1)<<1
- acc += scale * v
- scale *= 3
-
- shift++
- if shift == bitsPerWord {
- s = s[1:]
- a = a[1:]
- sw = s[0]
- aw = a[0]
- shift = 0
- } else {
- sw >>= 1
- aw >>= 1
- }
- }
-
- out[0] = byte(acc)
- out = out[1:]
- }
-}
-
-func (p *poly) fromMod2(in *poly2) {
- var shift uint
- words := in[:]
- word := words[0]
-
- for i := range p {
- p[i] = uint16(word & 1)
- word >>= 1
- shift++
- if shift == bitsPerWord {
- words = words[1:]
- word = words[0]
- shift = 0
- }
- }
-}
-
-func (p *poly) fromMod3(in *poly3) {
- var shift uint
- s := in.s[:]
- a := in.a[:]
- sw := s[0]
- aw := a[0]
-
- for i := range p {
- p[i] = uint16(aw&1 | (sw&1)<<1)
- aw >>= 1
- sw >>= 1
- shift++
- if shift == bitsPerWord {
- a = a[1:]
- s = s[1:]
- aw = a[0]
- sw = s[0]
- shift = 0
- }
- }
-}
-
-func (p *poly) fromMod3ToModQ(in *poly3) {
- var shift uint
- s := in.s[:]
- a := in.a[:]
- sw := s[0]
- aw := a[0]
-
- for i := range p {
- p[i] = mod3ToModQ(uint16(aw&1 | (sw&1)<<1))
- aw >>= 1
- sw >>= 1
- shift++
- if shift == bitsPerWord {
- a = a[1:]
- s = s[1:]
- aw = a[0]
- sw = s[0]
- shift = 0
- }
- }
-}
-
-func lsbToAll(v uint) uint {
- return uint(int(v<<(bitsPerWord-1)) >> (bitsPerWord - 1))
-}
-
-func (p *poly3) mulConst(ms, ma uint) {
- ms = lsbToAll(ms)
- ma = lsbToAll(ma)
-
- for i := range p.a {
- p.s[i], p.a[i] = (ma&p.s[i])^(ms&p.a[i]), (ma&p.a[i])^(ms&p.s[i])
- }
-}
-
-func cmovWords(out, in *[wordsPerPoly]uint, mov uint) {
- for i := range out {
- out[i] = (out[i] & ^mov) | (in[i] & mov)
- }
-}
-
-func rotWords(out, in *[wordsPerPoly]uint, bits uint) {
- start := bits / bitsPerWord
- n := (N - bits) / bitsPerWord
-
- for i := uint(0); i < n; i++ {
- out[i] = in[start+i]
- }
-
- carry := in[wordsPerPoly-1]
-
- for i := uint(0); i < start; i++ {
- out[n+i] = carry | in[i]<<bitsInLastWord
- carry = in[i] >> (bitsPerWord - bitsInLastWord)
- }
-
- out[wordsPerPoly-1] = carry
-}
-
-// rotBits right-rotates the bits in |in|. bits must be a non-zero power of two
-// and less than bitsPerWord.
-func rotBits(out, in *[wordsPerPoly]uint, bits uint) {
- if (bits == 0 || (bits & (bits - 1)) != 0 || bits > bitsPerWord/2 || bitsInLastWord < bitsPerWord/2) {
- panic("internal error");
- }
-
- carry := in[wordsPerPoly-1] << (bitsPerWord - bits)
-
- for i := wordsPerPoly - 2; i >= 0; i-- {
- out[i] = carry | in[i]>>bits
- carry = in[i] << (bitsPerWord - bits)
- }
-
- out[wordsPerPoly-1] = carry>>(bitsPerWord-bitsInLastWord) | in[wordsPerPoly-1]>>bits
-}
-
-func (p *poly3) rotWords(bits uint, in *poly3) {
- rotWords(&p.s, &in.s, bits)
- rotWords(&p.a, &in.a, bits)
-}
-
-func (p *poly3) rotBits(bits uint, in *poly3) {
- rotBits(&p.s, &in.s, bits)
- rotBits(&p.a, &in.a, bits)
-}
-
-func (p *poly3) cmov(in *poly3, mov uint) {
- cmovWords(&p.s, &in.s, mov)
- cmovWords(&p.a, &in.a, mov)
-}
-
-func (p *poly3) rot(bits uint) {
- if bits > N {
- panic("invalid")
- }
- var shifted poly3
-
- shift := uint(9)
- for ; (1 << shift) >= bitsPerWord; shift-- {
- shifted.rotWords(1<<shift, p)
- p.cmov(&shifted, lsbToAll(bits>>shift))
- }
- for ; shift < 9; shift-- {
- shifted.rotBits(1<<shift, p)
- p.cmov(&shifted, lsbToAll(bits>>shift))
- }
-}
-
-func (p *poly3) fmadd(ms, ma uint, in *poly3) {
- ms = lsbToAll(ms)
- ma = lsbToAll(ma)
-
- for i := range p.a {
- products := (ma & in.s[i]) ^ (ms & in.a[i])
- producta := (ma & in.a[i]) ^ (ms & in.s[i])
-
- ns1Ana1 := ^p.s[i] & ^p.a[i]
- ns2Ana2 := ^products & ^producta
-
- p.s[i], p.a[i] = (p.a[i]&producta)^(ns1Ana1&products)^(p.s[i]&ns2Ana2), (p.s[i]&products)^(ns1Ana1&producta)^(p.a[i]&ns2Ana2)
- }
-}
-
-func (p *poly3) modPhiN() {
- factora := uint(int(p.s[wordsPerPoly-1]<<(bitsPerWord-bitsInLastWord)) >> (bitsPerWord - 1))
- factors := uint(int(p.a[wordsPerPoly-1]<<(bitsPerWord-bitsInLastWord)) >> (bitsPerWord - 1))
- ns2Ana2 := ^factors & ^factora
-
- for i := range p.s {
- ns1Ana1 := ^p.s[i] & ^p.a[i]
- p.s[i], p.a[i] = (p.a[i]&factora)^(ns1Ana1&factors)^(p.s[i]&ns2Ana2), (p.s[i]&factors)^(ns1Ana1&factora)^(p.a[i]&ns2Ana2)
- }
-}
-
-func (p *poly3) cswap(other *poly3, swap uint) {
- for i := range p.s {
- sums := swap & (p.s[i] ^ other.s[i])
- p.s[i] ^= sums
- other.s[i] ^= sums
-
- suma := swap & (p.a[i] ^ other.a[i])
- p.a[i] ^= suma
- other.a[i] ^= suma
- }
-}
-
-func (p *poly3) mulx() {
- carrys := (p.s[wordsPerPoly-1] >> (bitsInLastWord - 1)) & 1
- carrya := (p.a[wordsPerPoly-1] >> (bitsInLastWord - 1)) & 1
-
- for i := range p.s {
- outCarrys := p.s[i] >> (bitsPerWord - 1)
- outCarrya := p.a[i] >> (bitsPerWord - 1)
- p.s[i] <<= 1
- p.a[i] <<= 1
- p.s[i] |= carrys
- p.a[i] |= carrya
- carrys = outCarrys
- carrya = outCarrya
- }
-}
-
-func (p *poly3) divx() {
- var carrys, carrya uint
-
- for i := len(p.s) - 1; i >= 0; i-- {
- outCarrys := p.s[i] & 1
- outCarrya := p.a[i] & 1
- p.s[i] >>= 1
- p.a[i] >>= 1
- p.s[i] |= carrys << (bitsPerWord - 1)
- p.a[i] |= carrya << (bitsPerWord - 1)
- carrys = outCarrys
- carrya = outCarrya
- }
-}
-
-type poly2 [wordsPerPoly]uint
-
-func (p *poly2) fromDiscrete(in *poly) {
- var shift uint
- words := p[:]
- words[0] = 0
-
- for _, v := range in {
- words[0] >>= 1
- words[0] |= uint(v&1) << (bitsPerWord - 1)
- shift++
- if shift == bitsPerWord {
- words = words[1:]
- words[0] = 0
- shift = 0
- }
- }
-
- words[0] >>= bitsPerWord - shift
-}
-
-func (p *poly2) setPhiN() {
- for i := range p {
- p[i] = ^uint(0)
- }
- p[wordsPerPoly-1] &= (1 << bitsInLastWord) - 1
-}
-
-func (p *poly2) cswap(other *poly2, swap uint) {
- for i := range p {
- sum := swap & (p[i] ^ other[i])
- p[i] ^= sum
- other[i] ^= sum
- }
-}
-
-func (p *poly2) fmadd(m uint, in *poly2) {
- m = ^(m - 1)
-
- for i := range p {
- p[i] ^= in[i] & m
- }
-}
-
-func (p *poly2) lshift1() {
- var carry uint
- for i := range p {
- nextCarry := p[i] >> (bitsPerWord - 1)
- p[i] <<= 1
- p[i] |= carry
- carry = nextCarry
- }
-}
-
-func (p *poly2) rshift1() {
- var carry uint
- for i := len(p) - 1; i >= 0; i-- {
- nextCarry := p[i] & 1
- p[i] >>= 1
- p[i] |= carry << (bitsPerWord - 1)
- carry = nextCarry
- }
-}
-
-func (p *poly2) rot(bits uint) {
- if bits > N {
- panic("invalid")
- }
- var shifted [wordsPerPoly]uint
- out := (*[wordsPerPoly]uint)(p)
-
- shift := uint(9)
- for ; (1 << shift) >= bitsPerWord; shift-- {
- rotWords(&shifted, out, 1<<shift)
- cmovWords(out, &shifted, lsbToAll(bits>>shift))
- }
- for ; shift < 9; shift-- {
- rotBits(&shifted, out, 1<<shift)
- cmovWords(out, &shifted, lsbToAll(bits>>shift))
- }
-}
-
-type poly [N]uint16
-
-func (in *poly) marshal(out []byte) {
- p := in[:]
-
- for len(p) >= 8 {
- out[0] = byte(p[0])
- out[1] = byte(p[0]>>8) | byte((p[1]&0x07)<<5)
- out[2] = byte(p[1] >> 3)
- out[3] = byte(p[1]>>11) | byte((p[2]&0x3f)<<2)
- out[4] = byte(p[2]>>6) | byte((p[3]&0x01)<<7)
- out[5] = byte(p[3] >> 1)
- out[6] = byte(p[3]>>9) | byte((p[4]&0x0f)<<4)
- out[7] = byte(p[4] >> 4)
- out[8] = byte(p[4]>>12) | byte((p[5]&0x7f)<<1)
- out[9] = byte(p[5]>>7) | byte((p[6]&0x03)<<6)
- out[10] = byte(p[6] >> 2)
- out[11] = byte(p[6]>>10) | byte((p[7]&0x1f)<<3)
- out[12] = byte(p[7] >> 5)
-
- p = p[8:]
- out = out[13:]
- }
-
- // There are four remaining values.
- out[0] = byte(p[0])
- out[1] = byte(p[0]>>8) | byte((p[1]&0x07)<<5)
- out[2] = byte(p[1] >> 3)
- out[3] = byte(p[1]>>11) | byte((p[2]&0x3f)<<2)
- out[4] = byte(p[2]>>6) | byte((p[3]&0x01)<<7)
- out[5] = byte(p[3] >> 1)
- out[6] = byte(p[3] >> 9)
-}
-
-func (out *poly) unmarshal(in []byte) bool {
- p := out[:]
- for i := 0; i < 87; i++ {
- p[0] = uint16(in[0]) | uint16(in[1]&0x1f)<<8
- p[1] = uint16(in[1]>>5) | uint16(in[2])<<3 | uint16(in[3]&3)<<11
- p[2] = uint16(in[3]>>2) | uint16(in[4]&0x7f)<<6
- p[3] = uint16(in[4]>>7) | uint16(in[5])<<1 | uint16(in[6]&0xf)<<9
- p[4] = uint16(in[6]>>4) | uint16(in[7])<<4 | uint16(in[8]&1)<<12
- p[5] = uint16(in[8]>>1) | uint16(in[9]&0x3f)<<7
- p[6] = uint16(in[9]>>6) | uint16(in[10])<<2 | uint16(in[11]&7)<<10
- p[7] = uint16(in[11]>>3) | uint16(in[12])<<5
-
- p = p[8:]
- in = in[13:]
- }
-
- // There are four coefficients left over
- p[0] = uint16(in[0]) | uint16(in[1]&0x1f)<<8
- p[1] = uint16(in[1]>>5) | uint16(in[2])<<3 | uint16(in[3]&3)<<11
- p[2] = uint16(in[3]>>2) | uint16(in[4]&0x7f)<<6
- p[3] = uint16(in[4]>>7) | uint16(in[5])<<1 | uint16(in[6]&0xf)<<9
-
- if in[6]&0xf0 != 0 {
- return false
- }
-
- out[N-1] = 0
- var top int
- for _, v := range out {
- top += int(v)
- }
-
- out[N-1] = uint16(-top) % Q
- return true
-}
-
-func (in *poly) marshalS3(out []byte) {
- p := in[:]
- for len(p) >= 5 {
- out[0] = byte(p[0] + p[1]*3 + p[2]*9 + p[3]*27 + p[4]*81)
- out = out[1:]
- p = p[5:]
- }
-}
-
-func (out *poly) unmarshalS3(in []byte) bool {
- p := out[:]
- for i := 0; i < 140; i++ {
- c := in[0]
- if c >= 243 {
- return false
- }
- p[0] = uint16(c % 3)
- p[1] = uint16((c / 3) % 3)
- p[2] = uint16((c / 9) % 3)
- p[3] = uint16((c / 27) % 3)
- p[4] = uint16((c / 81) % 3)
-
- p = p[5:]
- in = in[1:]
- }
-
- out[N-1] = 0
- return true
-}
-
-func (p *poly) modPhiN() {
- for i := range p {
- p[i] = (p[i] + Q - p[N-1]) % Q
- }
-}
-
-func (out *poly) shortSample(in []byte) {
- // b a result
- // 00 00 00
- // 00 01 01
- // 00 10 10
- // 00 11 11
- // 01 00 10
- // 01 01 00
- // 01 10 01
- // 01 11 11
- // 10 00 01
- // 10 01 10
- // 10 10 00
- // 10 11 11
- // 11 00 11
- // 11 01 11
- // 11 10 11
- // 11 11 11
-
- // 1111 1111 1100 1001 1101 0010 1110 0100
- // f f c 9 d 2 e 4
- const lookup = uint32(0xffc9d2e4)
-
- p := out[:]
- for i := 0; i < 87; i++ {
- v := binary.LittleEndian.Uint32(in)
- v2 := (v & 0x55555555) + ((v >> 1) & 0x55555555)
- for j := 0; j < 8; j++ {
- p[j] = uint16(lookup >> ((v2 & 15) << 1) & 3)
- v2 >>= 4
- }
- p = p[8:]
- in = in[4:]
- }
-
- // There are four values remaining.
- v := binary.LittleEndian.Uint32(in)
- v2 := (v & 0x55555555) + ((v >> 1) & 0x55555555)
- for j := 0; j < 4; j++ {
- p[j] = uint16(lookup >> ((v2 & 15) << 1) & 3)
- v2 >>= 4
- }
-
- out[N-1] = 0
-}
-
-func (out *poly) shortSamplePlus(in []byte) {
- out.shortSample(in)
-
- var sum uint16
- for i := 0; i < N-1; i++ {
- sum += mod3ResultToModQ(out[i] * out[i+1])
- }
-
- scale := 1 + (1 & (sum >> 12))
- for i := 0; i < len(out); i += 2 {
- out[i] = (out[i] * scale) % 3
- }
-}
-
-func mul(out, scratch, a, b []uint16) {
- const schoolbookLimit = 32
- if len(a) < schoolbookLimit {
- for i := 0; i < len(a)*2; i++ {
- out[i] = 0
- }
- for i := range a {
- for j := range b {
- out[i+j] += a[i] * b[j]
- }
- }
- return
- }
-
- lowLen := len(a) / 2
- highLen := len(a) - lowLen
- aLow, aHigh := a[:lowLen], a[lowLen:]
- bLow, bHigh := b[:lowLen], b[lowLen:]
-
- for i := 0; i < lowLen; i++ {
- out[i] = aHigh[i] + aLow[i]
- }
- if highLen != lowLen {
- out[lowLen] = aHigh[lowLen]
- }
-
- for i := 0; i < lowLen; i++ {
- out[highLen+i] = bHigh[i] + bLow[i]
- }
- if highLen != lowLen {
- out[highLen+lowLen] = bHigh[lowLen]
- }
-
- mul(scratch, scratch[2*highLen:], out[:highLen], out[highLen:highLen*2])
- mul(out[lowLen*2:], scratch[2*highLen:], aHigh, bHigh)
- mul(out, scratch[2*highLen:], aLow, bLow)
-
- for i := 0; i < lowLen*2; i++ {
- scratch[i] -= out[i] + out[lowLen*2+i]
- }
- if lowLen != highLen {
- scratch[lowLen*2] -= out[lowLen*4]
- }
-
- for i := 0; i < 2*highLen; i++ {
- out[lowLen+i] += scratch[i]
- }
-}
-
-func (out *poly) mul(a, b *poly) {
- var prod, scratch [2 * N]uint16
- mul(prod[:], scratch[:], a[:], b[:])
- for i := range out {
- out[i] = (prod[i] + prod[i+N]) % Q
- }
-}
-
-func (p3 *poly3) mulMod3(x, y *poly3) {
- // (𝑥^n - 1) is a multiple of Φ(N) so we can work mod (𝑥^n - 1) here and
- // (reduce mod Φ(N) afterwards.
- x3 := *x
- y3 := *y
- s := x3.s[:]
- a := x3.a[:]
- sw := s[0]
- aw := a[0]
- p3.zero()
- var shift uint
- for i := 0; i < N; i++ {
- p3.fmadd(sw, aw, &y3)
- sw >>= 1
- aw >>= 1
- shift++
- if shift == bitsPerWord {
- s = s[1:]
- a = a[1:]
- sw = s[0]
- aw = a[0]
- shift = 0
- }
- y3.mulx()
- }
- p3.modPhiN()
-}
-
-// mod3ToModQ maps {0, 1, 2, 3} to {0, 1, Q-1, 0xffff}
-// The case of n == 3 should never happen but is included so that modQToMod3
-// can easily catch invalid inputs.
-func mod3ToModQ(n uint16) uint16 {
- return uint16(uint64(0xffff1fff00010000) >> (16 * n))
-}
-
-// modQToMod3 maps {0, 1, Q-1} to {(0, 0), (0, 1), (1, 0)} and also returns an int
-// which is one if the input is in range and zero otherwise.
-func modQToMod3(n uint16) (uint16, int) {
- result := (n&3 - (n>>1)&1)
- return result, subtle.ConstantTimeEq(int32(mod3ToModQ(result)), int32(n))
-}
-
-// mod3ResultToModQ maps {0, 1, 2, 4} to {0, 1, Q-1, 1}
-func mod3ResultToModQ(n uint16) uint16 {
- return ((((uint16(0x13) >> n) & 1) - 1) & 0x1fff) | ((uint16(0x12) >> n) & 1)
- //shift := (uint(0x324) >> (2 * n)) & 3
- //return uint16(uint64(0x00011fff00010000) >> (16 * shift))
-}
-
-// mulXMinus1 sets out to a×(𝑥 - 1) mod (𝑥^n - 1)
-func (out *poly) mulXMinus1() {
- // Multiplying by (𝑥 - 1) means negating each coefficient and adding in
- // the value of the previous one.
- origOut700 := out[700]
-
- for i := N - 1; i > 0; i-- {
- out[i] = (Q - out[i] + out[i-1]) % Q
- }
- out[0] = (Q - out[0] + origOut700) % Q
-}
-
-func (out *poly) lift(a *poly) {
- // We wish to calculate a/(𝑥-1) mod Φ(N) over GF(3), where Φ(N) is the
- // Nth cyclotomic polynomial, i.e. 1 + 𝑥 + … + 𝑥^700 (since N is prime).
-
- // 1/(𝑥-1) has a fairly basic structure that we can exploit to speed this up:
- //
- // R.<x> = PolynomialRing(GF(3)…)
- // inv = R.cyclotomic_polynomial(1).inverse_mod(R.cyclotomic_polynomial(n))
- // list(inv)[:15]
- // [1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2]
- //
- // This three-element pattern of coefficients repeats for the whole
- // polynomial.
- //
- // Next define the overbar operator such that z̅ = z[0] +
- // reverse(z[1:]). (Index zero of a polynomial here is the coefficient
- // of the constant term. So index one is the coefficient of 𝑥 and so
- // on.)
- //
- // A less odd way to define this is to see that z̅ negates the indexes,
- // so z̅[0] = z[-0], z̅[1] = z[-1] and so on.
- //
- // The use of z̅ is that, when working mod (𝑥^701 - 1), vz[0] = <v,
- // z̅>, vz[1] = <v, 𝑥z̅>, …. (Where <a, b> is the inner product: the sum
- // of the point-wise products.) Although we calculated the inverse mod
- // Φ(N), we can work mod (𝑥^N - 1) and reduce mod Φ(N) at the end.
- // (That's because (𝑥^N - 1) is a multiple of Φ(N).)
- //
- // When working mod (𝑥^N - 1), multiplication by 𝑥 is a right-rotation
- // of the list of coefficients.
- //
- // Thus we can consider what the pattern of z̅, 𝑥z̅, 𝑥^2z̅, … looks like:
- //
- // def reverse(xs):
- // suffix = list(xs[1:])
- // suffix.reverse()
- // return [xs[0]] + suffix
- //
- // def rotate(xs):
- // return [xs[-1]] + xs[:-1]
- //
- // zoverbar = reverse(list(inv) + [0])
- // xzoverbar = rotate(reverse(list(inv) + [0]))
- // x2zoverbar = rotate(rotate(reverse(list(inv) + [0])))
- //
- // zoverbar[:15]
- // [1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1]
- // xzoverbar[:15]
- // [0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0]
- // x2zoverbar[:15]
- // [2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2]
- //
- // (For a formula for z̅, see lemma two of appendix B.)
- //
- // After the first three elements have been taken care of, all then have
- // a repeating three-element cycle. The next value (𝑥^3z̅) involves
- // three rotations of the first pattern, thus the three-element cycle
- // lines up. However, the discontinuity in the first three elements
- // obviously moves to a different position. Consider the difference
- // between 𝑥^3z̅ and z̅:
- //
- // [x-y for (x,y) in zip(zoverbar, x3zoverbar)][:15]
- // [0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
- //
- // This pattern of differences is the same for all elements, although it
- // obviously moves right with the rotations.
- //
- // From this, we reach algorithm eight of appendix B.
-
- // Handle the first three elements of the inner products.
- out[0] = a[0] + a[2]
- out[1] = a[1]
- out[2] = 2*a[0] + a[2]
-
- // Use the repeating pattern to complete the first three inner products.
- for i := 3; i < 699; i += 3 {
- out[0] += 2*a[i] + a[i+2]
- out[1] += a[i] + 2*a[i+1]
- out[2] += a[i+1] + 2*a[i+2]
- }
-
- // Handle the fact that the three-element pattern doesn't fill the
- // polynomial exactly (since 701 isn't a multiple of three).
- out[2] += a[700]
- out[0] += 2 * a[699]
- out[1] += a[699] + 2*a[700]
-
- out[0] = out[0] % 3
- out[1] = out[1] % 3
- out[2] = out[2] % 3
-
- // Calculate the remaining inner products by taking advantage of the
- // fact that the pattern repeats every three cycles and the pattern of
- // differences is moves with the rotation.
- for i := 3; i < N; i++ {
- // Add twice something is the same as subtracting when working
- // mod 3. Doing it this way avoids underflow. Underflow is bad
- // because "% 3" doesn't work correctly for negative numbers
- // here since underflow will wrap to 2^16-1 and 2^16 isn't a
- // multiple of three.
- out[i] = (out[i-3] + 2*(a[i-2]+a[i-1]+a[i])) % 3
- }
-
- // Reduce mod Φ(N) by subtracting a multiple of out[700] from every
- // element and convert to mod Q. (See above about adding twice as
- // subtraction.)
- v := out[700] * 2
- for i := range out {
- out[i] = mod3ToModQ((out[i] + v) % 3)
- }
-
- out.mulXMinus1()
-}
-
-func (a *poly) cswap(b *poly, swap uint16) {
- for i := range a {
- sum := swap & (a[i] ^ b[i])
- a[i] ^= sum
- b[i] ^= sum
- }
-}
-
-func lt(a, b uint) uint {
- if a < b {
- return ^uint(0)
- }
- return 0
-}
-
-func bsMul(s1, a1, s2, a2 uint) (s3, a3 uint) {
- s3 = (a1 & s2) ^ (s1 & a2)
- a3 = (a1 & a2) ^ (s1 & s2)
- return
-}
-
-func (out *poly3) invertMod3(in *poly3) {
- // This algorithm follows algorithm 10 in the paper. (Although note that
- // the paper appears to have a bug: k should start at zero, not one.)
- // The best explanation for why it works is in the "Why it works"
- // section of
- // https://assets.onboardsecurity.com/static/downloads/NTRU/resources/NTRUTech014.pdf.
- var k uint
- degF, degG := uint(N-1), uint(N-1)
-
- var b, c, g poly3
- f := *in
-
- for i := range g.a {
- g.a[i] = ^uint(0)
- }
-
- b.a[0] = 1
-
- var f0s, f0a uint
- stillGoing := ^uint(0)
- for i := 0; i < 2*(N-1)-1; i++ {
- ss, sa := bsMul(f.s[0], f.a[0], g.s[0], g.a[0])
- ss, sa = sa&stillGoing&1, ss&stillGoing&1
- shouldSwap := ^uint(int((ss|sa)-1)>>(bitsPerWord-1)) & lt(degF, degG)
- f.cswap(&g, shouldSwap)
- b.cswap(&c, shouldSwap)
- degF, degG = (degG&shouldSwap)|(degF & ^shouldSwap), (degF&shouldSwap)|(degG&^shouldSwap)
- f.fmadd(ss, sa, &g)
- b.fmadd(ss, sa, &c)
-
- f.divx()
- f.s[wordsPerPoly-1] &= ((1 << bitsInLastWord) - 1) >> 1
- f.a[wordsPerPoly-1] &= ((1 << bitsInLastWord) - 1) >> 1
- c.mulx()
- c.s[0] &= ^uint(1)
- c.a[0] &= ^uint(1)
-
- degF--
- k += 1 & stillGoing
- f0s = (stillGoing & f.s[0]) | (^stillGoing & f0s)
- f0a = (stillGoing & f.a[0]) | (^stillGoing & f0a)
- stillGoing = ^uint(int(degF-1) >> (bitsPerWord - 1))
- }
-
- k -= N & lt(N, k)
- *out = b
- out.rot(k)
- out.mulConst(f0s, f0a)
- out.modPhiN()
-}
-
-func (out *poly) invertMod2(a *poly) {
- // This algorithm follows mix of algorithm 10 in the paper and the first
- // page of the PDF linked below. (Although note that the paper appears
- // to have a bug: k should start at zero, not one.) The best explanation
- // for why it works is in the "Why it works" section of
- // https://assets.onboardsecurity.com/static/downloads/NTRU/resources/NTRUTech014.pdf.
- var k uint
- degF, degG := uint(N-1), uint(N-1)
-
- var f poly2
- f.fromDiscrete(a)
- var b, c, g poly2
- g.setPhiN()
- b[0] = 1
-
- stillGoing := ^uint(0)
- for i := 0; i < 2*(N-1)-1; i++ {
- s := uint(f[0]&1) & stillGoing
- shouldSwap := ^(s - 1) & lt(degF, degG)
- f.cswap(&g, shouldSwap)
- b.cswap(&c, shouldSwap)
- degF, degG = (degG&shouldSwap)|(degF & ^shouldSwap), (degF&shouldSwap)|(degG&^shouldSwap)
- f.fmadd(s, &g)
- b.fmadd(s, &c)
-
- f.rshift1()
- c.lshift1()
-
- degF--
- k += 1 & stillGoing
- stillGoing = ^uint(int(degF-1) >> (bitsPerWord - 1))
- }
-
- k -= N & lt(N, k)
- b.rot(k)
- out.fromMod2(&b)
-}
-
-func (out *poly) invert(origA *poly) {
- // Inversion mod Q, which is done based on the result of inverting mod
- // 2. See the NTRU paper, page three.
- var a, tmp, tmp2, b poly
- b.invertMod2(origA)
-
- // Negate a.
- for i := range a {
- a[i] = Q - origA[i]
- }
-
- // We are working mod Q=2**13 and we need to iterate ceil(log_2(13))
- // times, which is four.
- for i := 0; i < 4; i++ {
- tmp.mul(&a, &b)
- tmp[0] += 2
- tmp2.mul(&b, &tmp)
- b = tmp2
- }
-
- *out = b
-}
-
-type PublicKey struct {
- h poly
-}
-
-func ParsePublicKey(in []byte) (*PublicKey, bool) {
- ret := new(PublicKey)
- if !ret.h.unmarshal(in) {
- return nil, false
- }
- return ret, true
-}
-
-func (pub *PublicKey) Marshal() []byte {
- ret := make([]byte, modQBytes)
- pub.h.marshal(ret)
- return ret
-}
-
-func (pub *PublicKey) Encap(rand io.Reader) (ciphertext []byte, sharedKey []byte) {
- var randBytes [352 + 352]byte
- if _, err := io.ReadFull(rand, randBytes[:]); err != nil {
- panic("rand failed")
- }
-
- var m, r poly
- m.shortSample(randBytes[:352])
- r.shortSample(randBytes[352:])
-
- var mBytes, rBytes [mod3Bytes]byte
- m.marshalS3(mBytes[:])
- r.marshalS3(rBytes[:])
-
- ciphertext = pub.owf(&m, &r)
-
- h := sha256.New()
- h.Write([]byte("shared key\x00"))
- h.Write(mBytes[:])
- h.Write(rBytes[:])
- h.Write(ciphertext)
- sharedKey = h.Sum(nil)
-
- return ciphertext, sharedKey
-}
-
-func (pub *PublicKey) owf(m, r *poly) []byte {
- for i := range r {
- r[i] = mod3ToModQ(r[i])
- }
-
- var mq poly
- mq.lift(m)
-
- var e poly
- e.mul(r, &pub.h)
- for i := range e {
- e[i] = (e[i] + mq[i]) % Q
- }
-
- ret := make([]byte, modQBytes)
- e.marshal(ret[:])
- return ret
-}
-
-type PrivateKey struct {
- PublicKey
- f, fp poly3
- hInv poly
- hmacKey [32]byte
-}
-
-func (priv *PrivateKey) Marshal() []byte {
- var ret [2*mod3Bytes + modQBytes]byte
- priv.f.marshal(ret[:])
- priv.fp.marshal(ret[mod3Bytes:])
- priv.h.marshal(ret[2*mod3Bytes:])
- return ret[:]
-}
-
-func (priv *PrivateKey) Decap(ciphertext []byte) (sharedKey []byte, ok bool) {
- if len(ciphertext) != modQBytes {
- return nil, false
- }
-
- var e poly
- if !e.unmarshal(ciphertext) {
- return nil, false
- }
-
- var f poly
- f.fromMod3ToModQ(&priv.f)
-
- var v1, m poly
- v1.mul(&e, &f)
-
- var v13 poly3
- v13.fromDiscreteMod3(&v1)
- // Note: v13 is not reduced mod phi(n).
-
- var m3 poly3
- m3.mulMod3(&v13, &priv.fp)
- m3.modPhiN()
- m.fromMod3(&m3)
-
- var mLift, delta poly
- mLift.lift(&m)
- for i := range delta {
- delta[i] = (e[i] - mLift[i] + Q) % Q
- }
- delta.mul(&delta, &priv.hInv)
- delta.modPhiN()
-
- var r poly3
- allOk := r.fromModQ(&delta)
-
- var mBytes, rBytes [mod3Bytes]byte
- m.marshalS3(mBytes[:])
- r.marshal(rBytes[:])
-
- var rPoly poly
- rPoly.fromMod3(&r)
- expectedCiphertext := priv.PublicKey.owf(&m, &rPoly)
-
- allOk &= subtle.ConstantTimeCompare(ciphertext, expectedCiphertext)
-
- hmacHash := hmac.New(sha256.New, priv.hmacKey[:])
- hmacHash.Write(ciphertext)
- hmacDigest := hmacHash.Sum(nil)
-
- h := sha256.New()
- h.Write([]byte("shared key\x00"))
- h.Write(mBytes[:])
- h.Write(rBytes[:])
- h.Write(ciphertext)
- sharedKey = h.Sum(nil)
-
- mask := uint8(allOk - 1)
- for i := range sharedKey {
- sharedKey[i] = (sharedKey[i] & ^mask) | (hmacDigest[i] & mask)
- }
-
- return sharedKey, true
-}
-
-func GenerateKey(rand io.Reader) PrivateKey {
- var randBytes [352 + 352]byte
- if _, err := io.ReadFull(rand, randBytes[:]); err != nil {
- panic("rand failed")
- }
-
- var f poly
- f.shortSamplePlus(randBytes[:352])
- var priv PrivateKey
- priv.f.fromDiscrete(&f)
- priv.fp.invertMod3(&priv.f)
-
- var g poly
- g.shortSamplePlus(randBytes[352:])
-
- var pgPhi1 poly
- for i := range g {
- pgPhi1[i] = mod3ToModQ(g[i])
- }
- for i := range pgPhi1 {
- pgPhi1[i] = (pgPhi1[i] * 3) % Q
- }
- pgPhi1.mulXMinus1()
-
- var fModQ poly
- fModQ.fromMod3ToModQ(&priv.f)
-
- var pfgPhi1 poly
- pfgPhi1.mul(&fModQ, &pgPhi1)
-
- var i poly
- i.invert(&pfgPhi1)
-
- priv.h.mul(&i, &pgPhi1)
- priv.h.mul(&priv.h, &pgPhi1)
-
- priv.hInv.mul(&i, &fModQ)
- priv.hInv.mul(&priv.hInv, &fModQ)
-
- return priv
-}
diff --git a/ssl/test/runner/key_agreement.go b/ssl/test/runner/key_agreement.go
index 47cdbb8..5739888 100644
--- a/ssl/test/runner/key_agreement.go
+++ b/ssl/test/runner/key_agreement.go
@@ -17,7 +17,6 @@
"io"
"math/big"
- "boringssl.googlesource.com/boringssl/ssl/test/runner/hrss"
"golang.org/x/crypto/curve25519"
)
@@ -341,90 +340,6 @@
return out[:], nil
}
-// cecpq2KEM implements CECPQ2, which is HRSS+SXY combined with X25519.
-type cecpq2KEM struct {
- x25519PrivateKey [32]byte
- hrssPrivateKey hrss.PrivateKey
-}
-
-func (e *cecpq2KEM) generate(rand io.Reader) (publicKey []byte, err error) {
- if _, err := io.ReadFull(rand, e.x25519PrivateKey[:]); err != nil {
- return nil, err
- }
-
- var x25519Public [32]byte
- curve25519.ScalarBaseMult(&x25519Public, &e.x25519PrivateKey)
-
- e.hrssPrivateKey = hrss.GenerateKey(rand)
- hrssPublic := e.hrssPrivateKey.PublicKey.Marshal()
-
- var ret []byte
- ret = append(ret, x25519Public[:]...)
- ret = append(ret, hrssPublic...)
- return ret, nil
-}
-
-func (e *cecpq2KEM) encap(rand io.Reader, peerKey []byte) (ciphertext []byte, secret []byte, err error) {
- if len(peerKey) != 32+hrss.PublicKeySize {
- return nil, nil, errors.New("tls: bad length CECPQ2 offer")
- }
-
- if _, err := io.ReadFull(rand, e.x25519PrivateKey[:]); err != nil {
- return nil, nil, err
- }
-
- var x25519Shared, x25519PeerKey, x25519Public [32]byte
- copy(x25519PeerKey[:], peerKey)
- curve25519.ScalarBaseMult(&x25519Public, &e.x25519PrivateKey)
- curve25519.ScalarMult(&x25519Shared, &e.x25519PrivateKey, &x25519PeerKey)
-
- // Per RFC 7748, reject the all-zero value in constant time.
- var zeros [32]byte
- if subtle.ConstantTimeCompare(zeros[:], x25519Shared[:]) == 1 {
- return nil, nil, errors.New("tls: X25519 value with wrong order")
- }
-
- hrssPublicKey, ok := hrss.ParsePublicKey(peerKey[32:])
- if !ok {
- return nil, nil, errors.New("tls: bad CECPQ2 offer")
- }
-
- hrssCiphertext, hrssShared := hrssPublicKey.Encap(rand)
-
- ciphertext = append(ciphertext, x25519Public[:]...)
- ciphertext = append(ciphertext, hrssCiphertext...)
- secret = append(secret, x25519Shared[:]...)
- secret = append(secret, hrssShared...)
-
- return ciphertext, secret, nil
-}
-
-func (e *cecpq2KEM) decap(ciphertext []byte) (secret []byte, err error) {
- if len(ciphertext) != 32+hrss.CiphertextSize {
- return nil, errors.New("tls: bad length CECPQ2 reply")
- }
-
- var x25519Shared, x25519PeerKey [32]byte
- copy(x25519PeerKey[:], ciphertext)
- curve25519.ScalarMult(&x25519Shared, &e.x25519PrivateKey, &x25519PeerKey)
-
- // Per RFC 7748, reject the all-zero value in constant time.
- var zeros [32]byte
- if subtle.ConstantTimeCompare(zeros[:], x25519Shared[:]) == 1 {
- return nil, errors.New("tls: X25519 value with wrong order")
- }
-
- hrssShared, ok := e.hrssPrivateKey.Decap(ciphertext[32:])
- if !ok {
- return nil, errors.New("tls: invalid HRSS ciphertext")
- }
-
- secret = append(secret, x25519Shared[:]...)
- secret = append(secret, hrssShared...)
-
- return secret, nil
-}
-
func kemForCurveID(id CurveID, config *Config) (kemImplementation, bool) {
switch id {
case CurveP224:
@@ -437,8 +352,6 @@
return &ecdhKEM{curve: elliptic.P521(), sendCompressed: config.Bugs.SendCompressedCoordinates}, true
case CurveX25519:
return &x25519KEM{setHighBit: config.Bugs.SetX25519HighBit}, true
- case CurveCECPQ2:
- return &cecpq2KEM{}, true
default:
return nil, false
}
@@ -587,7 +500,7 @@
NextCandidate:
for _, candidate := range preferredCurves {
if isPqGroup(candidate) && version < VersionTLS13 {
- // CECPQ2 is TLS 1.3-only.
+ // Post-quantum "groups" require TLS 1.3.
continue
}
diff --git a/ssl/test/runner/runner.go b/ssl/test/runner/runner.go
index 3d660da..54bb7b4 100644
--- a/ssl/test/runner/runner.go
+++ b/ssl/test/runner/runner.go
@@ -11371,13 +11371,12 @@
{"P-384", CurveP384},
{"P-521", CurveP521},
{"X25519", CurveX25519},
- {"CECPQ2", CurveCECPQ2},
}
const bogusCurve = 0x1234
func isPqGroup(r CurveID) bool {
- return r == CurveCECPQ2
+ return r == CurveX25519Kyber768
}
func addCurveTests() {
@@ -11841,78 +11840,79 @@
},
})
- // CECPQ2 should not be offered by a TLS < 1.3 client.
+ // Kyber should not be offered by a TLS < 1.3 client.
testCases = append(testCases, testCase{
- name: "CECPQ2NotInTLS12",
+ name: "KyberNotInTLS12",
config: Config{
Bugs: ProtocolBugs{
- FailIfCECPQ2Offered: true,
+ FailIfKyberOffered: true,
},
},
flags: []string{
"-max-version", strconv.Itoa(VersionTLS12),
- "-curves", strconv.Itoa(int(CurveCECPQ2)),
+ "-curves", strconv.Itoa(int(CurveX25519Kyber768)),
"-curves", strconv.Itoa(int(CurveX25519)),
},
})
- // CECPQ2 should not crash a TLS < 1.3 client if the server mistakenly
+ // Kyber should not crash a TLS < 1.3 client if the server mistakenly
// selects it.
testCases = append(testCases, testCase{
- name: "CECPQ2NotAcceptedByTLS12Client",
+ name: "KyberNotAcceptedByTLS12Client",
config: Config{
Bugs: ProtocolBugs{
- SendCurve: CurveCECPQ2,
+ SendCurve: CurveX25519Kyber768,
},
},
flags: []string{
"-max-version", strconv.Itoa(VersionTLS12),
- "-curves", strconv.Itoa(int(CurveCECPQ2)),
+ "-curves", strconv.Itoa(int(CurveX25519Kyber768)),
"-curves", strconv.Itoa(int(CurveX25519)),
},
shouldFail: true,
expectedError: ":WRONG_CURVE:",
})
- // CECPQ2 should not be offered by default as a client.
+ // Kyber should not be offered by default as a client.
testCases = append(testCases, testCase{
- name: "CECPQ2NotEnabledByDefaultInClients",
+ name: "KyberNotEnabledByDefaultInClients",
config: Config{
MinVersion: VersionTLS13,
Bugs: ProtocolBugs{
- FailIfCECPQ2Offered: true,
+ FailIfKyberOffered: true,
},
},
})
- // If CECPQ2 is offered, both X25519 and CECPQ2 should have a key-share.
+ // If Kyber is offered, both X25519 and Kyber should have a key-share.
testCases = append(testCases, testCase{
- name: "NotJustCECPQ2KeyShare",
+ name: "NotJustKyberKeyShare",
config: Config{
MinVersion: VersionTLS13,
Bugs: ProtocolBugs{
- ExpectedKeyShares: []CurveID{CurveCECPQ2, CurveX25519},
+ ExpectedKeyShares: []CurveID{CurveX25519Kyber768, CurveX25519},
},
},
flags: []string{
- "-curves", strconv.Itoa(int(CurveCECPQ2)),
+ "-curves", strconv.Itoa(int(CurveX25519Kyber768)),
"-curves", strconv.Itoa(int(CurveX25519)),
- "-expect-curve-id", strconv.Itoa(int(CurveCECPQ2)),
+ // Cannot expect Kyber until we have a Go implementation of it.
+ // "-expect-curve-id", strconv.Itoa(int(CurveX25519Kyber768)),
},
})
// ... and the other way around
testCases = append(testCases, testCase{
- name: "CECPQ2KeyShareIncludedSecond",
+ name: "KyberKeyShareIncludedSecond",
config: Config{
MinVersion: VersionTLS13,
Bugs: ProtocolBugs{
- ExpectedKeyShares: []CurveID{CurveX25519, CurveCECPQ2},
+ ExpectedKeyShares: []CurveID{CurveX25519, CurveX25519Kyber768},
},
},
flags: []string{
"-curves", strconv.Itoa(int(CurveX25519)),
- "-curves", strconv.Itoa(int(CurveCECPQ2)),
+ "-curves", strconv.Itoa(int(CurveX25519Kyber768)),
"-expect-curve-id", strconv.Itoa(int(CurveX25519)),
},
})
@@ -11921,44 +11921,46 @@
// first classical and first post-quantum "curves" that get key shares
// included.
testCases = append(testCases, testCase{
- name: "CECPQ2KeyShareIncludedThird",
+ name: "KyberKeyShareIncludedThird",
config: Config{
MinVersion: VersionTLS13,
Bugs: ProtocolBugs{
- ExpectedKeyShares: []CurveID{CurveX25519, CurveCECPQ2},
+ ExpectedKeyShares: []CurveID{CurveX25519, CurveX25519Kyber768},
},
},
flags: []string{
"-curves", strconv.Itoa(int(CurveX25519)),
"-curves", strconv.Itoa(int(CurveP256)),
- "-curves", strconv.Itoa(int(CurveCECPQ2)),
+ "-curves", strconv.Itoa(int(CurveX25519Kyber768)),
"-expect-curve-id", strconv.Itoa(int(CurveX25519)),
},
})
- // If CECPQ2 is the only configured curve, the key share is sent.
+ // If Kyber is the only configured curve, the key share is sent.
testCases = append(testCases, testCase{
- name: "JustConfiguringCECPQ2Works",
+ name: "JustConfiguringKyberWorks",
config: Config{
MinVersion: VersionTLS13,
Bugs: ProtocolBugs{
- ExpectedKeyShares: []CurveID{CurveCECPQ2},
+ ExpectedKeyShares: []CurveID{CurveX25519Kyber768},
},
},
flags: []string{
- "-curves", strconv.Itoa(int(CurveCECPQ2)),
- "-expect-curve-id", strconv.Itoa(int(CurveCECPQ2)),
+ "-curves", strconv.Itoa(int(CurveX25519Kyber768)),
+ "-expect-curve-id", strconv.Itoa(int(CurveX25519Kyber768)),
},
+ shouldFail: true,
+ expectedLocalError: "no curve supported by both client and server",
})
- // As a server, CECPQ2 is not yet supported by default.
+ // As a server, Kyber is not yet supported by default.
testCases = append(testCases, testCase{
testType: serverTest,
- name: "CECPQ2NotEnabledByDefaultForAServer",
+ name: "KyberNotEnabledByDefaultForAServer",
config: Config{
MinVersion: VersionTLS13,
- CurvePreferences: []CurveID{CurveCECPQ2, CurveX25519},
- DefaultCurves: []CurveID{CurveCECPQ2},
+ CurvePreferences: []CurveID{CurveX25519Kyber768, CurveX25519},
+ DefaultCurves: []CurveID{CurveX25519Kyber768},
},
flags: []string{
"-server-preference",
diff --git a/ssl/test/test_config.cc b/ssl/test/test_config.cc
index 109c69e..09faf04 100644
--- a/ssl/test/test_config.cc
+++ b/ssl/test/test_config.cc
@@ -1909,8 +1909,8 @@
nids.push_back(NID_X25519);
break;
- case SSL_CURVE_CECPQ2:
- nids.push_back(NID_CECPQ2);
+ case SSL_CURVE_X25519KYBER768:
+ nids.push_back(NID_X25519Kyber768);
break;
}
if (!SSL_set1_curves(ssl.get(), &nids[0], nids.size())) {