blob: d94de284c91b06aa30dea727808030c4e3192eb6 [file] [log] [blame]
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <openssl/sha.h>
#include <string.h>
#include <openssl/mem.h>
#include "internal.h"
#include "../../internal.h"
// The 32-bit hash algorithms share a common byte-order neutral collector and
// padding function implementations that operate on unaligned data,
// ../digest/md32_common.h. SHA-512 is the only 64-bit hash algorithm, as of
// this writing, so there is no need for a common collector/padding
// implementation yet.
static int sha512_final_impl(uint8_t *out, SHA512_CTX *sha);
int SHA384_Init(SHA512_CTX *sha) {
sha->h[0] = UINT64_C(0xcbbb9d5dc1059ed8);
sha->h[1] = UINT64_C(0x629a292a367cd507);
sha->h[2] = UINT64_C(0x9159015a3070dd17);
sha->h[3] = UINT64_C(0x152fecd8f70e5939);
sha->h[4] = UINT64_C(0x67332667ffc00b31);
sha->h[5] = UINT64_C(0x8eb44a8768581511);
sha->h[6] = UINT64_C(0xdb0c2e0d64f98fa7);
sha->h[7] = UINT64_C(0x47b5481dbefa4fa4);
sha->Nl = 0;
sha->Nh = 0;
sha->num = 0;
sha->md_len = SHA384_DIGEST_LENGTH;
return 1;
}
int SHA512_Init(SHA512_CTX *sha) {
sha->h[0] = UINT64_C(0x6a09e667f3bcc908);
sha->h[1] = UINT64_C(0xbb67ae8584caa73b);
sha->h[2] = UINT64_C(0x3c6ef372fe94f82b);
sha->h[3] = UINT64_C(0xa54ff53a5f1d36f1);
sha->h[4] = UINT64_C(0x510e527fade682d1);
sha->h[5] = UINT64_C(0x9b05688c2b3e6c1f);
sha->h[6] = UINT64_C(0x1f83d9abfb41bd6b);
sha->h[7] = UINT64_C(0x5be0cd19137e2179);
sha->Nl = 0;
sha->Nh = 0;
sha->num = 0;
sha->md_len = SHA512_DIGEST_LENGTH;
return 1;
}
int SHA512_256_Init(SHA512_CTX *sha) {
sha->h[0] = UINT64_C(0x22312194fc2bf72c);
sha->h[1] = UINT64_C(0x9f555fa3c84c64c2);
sha->h[2] = UINT64_C(0x2393b86b6f53b151);
sha->h[3] = UINT64_C(0x963877195940eabd);
sha->h[4] = UINT64_C(0x96283ee2a88effe3);
sha->h[5] = UINT64_C(0xbe5e1e2553863992);
sha->h[6] = UINT64_C(0x2b0199fc2c85b8aa);
sha->h[7] = UINT64_C(0x0eb72ddc81c52ca2);
sha->Nl = 0;
sha->Nh = 0;
sha->num = 0;
sha->md_len = SHA512_256_DIGEST_LENGTH;
return 1;
}
uint8_t *SHA384(const uint8_t *data, size_t len,
uint8_t out[SHA384_DIGEST_LENGTH]) {
SHA512_CTX ctx;
SHA384_Init(&ctx);
SHA384_Update(&ctx, data, len);
SHA384_Final(out, &ctx);
OPENSSL_cleanse(&ctx, sizeof(ctx));
return out;
}
uint8_t *SHA512(const uint8_t *data, size_t len,
uint8_t out[SHA512_DIGEST_LENGTH]) {
SHA512_CTX ctx;
SHA512_Init(&ctx);
SHA512_Update(&ctx, data, len);
SHA512_Final(out, &ctx);
OPENSSL_cleanse(&ctx, sizeof(ctx));
return out;
}
uint8_t *SHA512_256(const uint8_t *data, size_t len,
uint8_t out[SHA512_256_DIGEST_LENGTH]) {
SHA512_CTX ctx;
SHA512_256_Init(&ctx);
SHA512_256_Update(&ctx, data, len);
SHA512_256_Final(out, &ctx);
OPENSSL_cleanse(&ctx, sizeof(ctx));
return out;
}
#if !defined(SHA512_ASM)
static void sha512_block_data_order(uint64_t *state, const uint8_t *in,
size_t num_blocks);
#endif
int SHA384_Final(uint8_t out[SHA384_DIGEST_LENGTH], SHA512_CTX *sha) {
// |SHA384_Init| sets |sha->md_len| to |SHA384_DIGEST_LENGTH|, so this has a
// smaller output.
assert(sha->md_len == SHA384_DIGEST_LENGTH);
return sha512_final_impl(out, sha);
}
int SHA384_Update(SHA512_CTX *sha, const void *data, size_t len) {
return SHA512_Update(sha, data, len);
}
int SHA512_256_Update(SHA512_CTX *sha, const void *data, size_t len) {
return SHA512_Update(sha, data, len);
}
int SHA512_256_Final(uint8_t out[SHA512_256_DIGEST_LENGTH], SHA512_CTX *sha) {
// |SHA512_256_Init| sets |sha->md_len| to |SHA512_256_DIGEST_LENGTH|, so this
// has a |smaller output.
assert(sha->md_len == SHA512_256_DIGEST_LENGTH);
return sha512_final_impl(out, sha);
}
void SHA512_Transform(SHA512_CTX *c, const uint8_t block[SHA512_CBLOCK]) {
sha512_block_data_order(c->h, block, 1);
}
int SHA512_Update(SHA512_CTX *c, const void *in_data, size_t len) {
uint64_t l;
uint8_t *p = c->p;
const uint8_t *data = in_data;
if (len == 0) {
return 1;
}
l = (c->Nl + (((uint64_t)len) << 3)) & UINT64_C(0xffffffffffffffff);
if (l < c->Nl) {
c->Nh++;
}
if (sizeof(len) >= 8) {
c->Nh += (((uint64_t)len) >> 61);
}
c->Nl = l;
if (c->num != 0) {
size_t n = sizeof(c->p) - c->num;
if (len < n) {
OPENSSL_memcpy(p + c->num, data, len);
c->num += (unsigned int)len;
return 1;
} else {
OPENSSL_memcpy(p + c->num, data, n), c->num = 0;
len -= n;
data += n;
sha512_block_data_order(c->h, p, 1);
}
}
if (len >= sizeof(c->p)) {
sha512_block_data_order(c->h, data, len / sizeof(c->p));
data += len;
len %= sizeof(c->p);
data -= len;
}
if (len != 0) {
OPENSSL_memcpy(p, data, len);
c->num = (int)len;
}
return 1;
}
int SHA512_Final(uint8_t out[SHA512_DIGEST_LENGTH], SHA512_CTX *sha) {
// Ideally we would assert |sha->md_len| is |SHA512_DIGEST_LENGTH| to match
// the size hint, but calling code often pairs |SHA384_Init| with
// |SHA512_Final| and expects |sha->md_len| to carry the size over.
//
// TODO(davidben): Add an assert and fix code to match them up.
return sha512_final_impl(out, sha);
}
static int sha512_final_impl(uint8_t *out, SHA512_CTX *sha) {
uint8_t *p = sha->p;
size_t n = sha->num;
p[n] = 0x80; // There always is a room for one
n++;
if (n > (sizeof(sha->p) - 16)) {
OPENSSL_memset(p + n, 0, sizeof(sha->p) - n);
n = 0;
sha512_block_data_order(sha->h, p, 1);
}
OPENSSL_memset(p + n, 0, sizeof(sha->p) - 16 - n);
CRYPTO_store_u64_be(p + sizeof(sha->p) - 16, sha->Nh);
CRYPTO_store_u64_be(p + sizeof(sha->p) - 8, sha->Nl);
sha512_block_data_order(sha->h, p, 1);
if (out == NULL) {
// TODO(davidben): This NULL check is absent in other low-level hash 'final'
// functions and is one of the few places one can fail.
return 0;
}
assert(sha->md_len % 8 == 0);
const size_t out_words = sha->md_len / 8;
for (size_t i = 0; i < out_words; i++) {
CRYPTO_store_u64_be(out, sha->h[i]);
out += 8;
}
return 1;
}
#ifndef SHA512_ASM
static const uint64_t K512[80] = {
UINT64_C(0x428a2f98d728ae22), UINT64_C(0x7137449123ef65cd),
UINT64_C(0xb5c0fbcfec4d3b2f), UINT64_C(0xe9b5dba58189dbbc),
UINT64_C(0x3956c25bf348b538), UINT64_C(0x59f111f1b605d019),
UINT64_C(0x923f82a4af194f9b), UINT64_C(0xab1c5ed5da6d8118),
UINT64_C(0xd807aa98a3030242), UINT64_C(0x12835b0145706fbe),
UINT64_C(0x243185be4ee4b28c), UINT64_C(0x550c7dc3d5ffb4e2),
UINT64_C(0x72be5d74f27b896f), UINT64_C(0x80deb1fe3b1696b1),
UINT64_C(0x9bdc06a725c71235), UINT64_C(0xc19bf174cf692694),
UINT64_C(0xe49b69c19ef14ad2), UINT64_C(0xefbe4786384f25e3),
UINT64_C(0x0fc19dc68b8cd5b5), UINT64_C(0x240ca1cc77ac9c65),
UINT64_C(0x2de92c6f592b0275), UINT64_C(0x4a7484aa6ea6e483),
UINT64_C(0x5cb0a9dcbd41fbd4), UINT64_C(0x76f988da831153b5),
UINT64_C(0x983e5152ee66dfab), UINT64_C(0xa831c66d2db43210),
UINT64_C(0xb00327c898fb213f), UINT64_C(0xbf597fc7beef0ee4),
UINT64_C(0xc6e00bf33da88fc2), UINT64_C(0xd5a79147930aa725),
UINT64_C(0x06ca6351e003826f), UINT64_C(0x142929670a0e6e70),
UINT64_C(0x27b70a8546d22ffc), UINT64_C(0x2e1b21385c26c926),
UINT64_C(0x4d2c6dfc5ac42aed), UINT64_C(0x53380d139d95b3df),
UINT64_C(0x650a73548baf63de), UINT64_C(0x766a0abb3c77b2a8),
UINT64_C(0x81c2c92e47edaee6), UINT64_C(0x92722c851482353b),
UINT64_C(0xa2bfe8a14cf10364), UINT64_C(0xa81a664bbc423001),
UINT64_C(0xc24b8b70d0f89791), UINT64_C(0xc76c51a30654be30),
UINT64_C(0xd192e819d6ef5218), UINT64_C(0xd69906245565a910),
UINT64_C(0xf40e35855771202a), UINT64_C(0x106aa07032bbd1b8),
UINT64_C(0x19a4c116b8d2d0c8), UINT64_C(0x1e376c085141ab53),
UINT64_C(0x2748774cdf8eeb99), UINT64_C(0x34b0bcb5e19b48a8),
UINT64_C(0x391c0cb3c5c95a63), UINT64_C(0x4ed8aa4ae3418acb),
UINT64_C(0x5b9cca4f7763e373), UINT64_C(0x682e6ff3d6b2b8a3),
UINT64_C(0x748f82ee5defb2fc), UINT64_C(0x78a5636f43172f60),
UINT64_C(0x84c87814a1f0ab72), UINT64_C(0x8cc702081a6439ec),
UINT64_C(0x90befffa23631e28), UINT64_C(0xa4506cebde82bde9),
UINT64_C(0xbef9a3f7b2c67915), UINT64_C(0xc67178f2e372532b),
UINT64_C(0xca273eceea26619c), UINT64_C(0xd186b8c721c0c207),
UINT64_C(0xeada7dd6cde0eb1e), UINT64_C(0xf57d4f7fee6ed178),
UINT64_C(0x06f067aa72176fba), UINT64_C(0x0a637dc5a2c898a6),
UINT64_C(0x113f9804bef90dae), UINT64_C(0x1b710b35131c471b),
UINT64_C(0x28db77f523047d84), UINT64_C(0x32caab7b40c72493),
UINT64_C(0x3c9ebe0a15c9bebc), UINT64_C(0x431d67c49c100d4c),
UINT64_C(0x4cc5d4becb3e42b6), UINT64_C(0x597f299cfc657e2a),
UINT64_C(0x5fcb6fab3ad6faec), UINT64_C(0x6c44198c4a475817),
};
#define Sigma0(x) \
(CRYPTO_rotr_u64((x), 28) ^ CRYPTO_rotr_u64((x), 34) ^ \
CRYPTO_rotr_u64((x), 39))
#define Sigma1(x) \
(CRYPTO_rotr_u64((x), 14) ^ CRYPTO_rotr_u64((x), 18) ^ \
CRYPTO_rotr_u64((x), 41))
#define sigma0(x) \
(CRYPTO_rotr_u64((x), 1) ^ CRYPTO_rotr_u64((x), 8) ^ ((x) >> 7))
#define sigma1(x) \
(CRYPTO_rotr_u64((x), 19) ^ CRYPTO_rotr_u64((x), 61) ^ ((x) >> 6))
#define Ch(x, y, z) (((x) & (y)) ^ ((~(x)) & (z)))
#define Maj(x, y, z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)))
#if defined(__i386) || defined(__i386__) || defined(_M_IX86)
// This code should give better results on 32-bit CPU with less than
// ~24 registers, both size and performance wise...
static void sha512_block_data_order(uint64_t *state, const uint8_t *in,
size_t num) {
uint64_t A, E, T;
uint64_t X[9 + 80], *F;
int i;
while (num--) {
F = X + 80;
A = state[0];
F[1] = state[1];
F[2] = state[2];
F[3] = state[3];
E = state[4];
F[5] = state[5];
F[6] = state[6];
F[7] = state[7];
for (i = 0; i < 16; i++, F--) {
T = CRYPTO_load_u64_be(in + i * 8);
F[0] = A;
F[4] = E;
F[8] = T;
T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
E = F[3] + T;
A = T + Sigma0(A) + Maj(A, F[1], F[2]);
}
for (; i < 80; i++, F--) {
T = sigma0(F[8 + 16 - 1]);
T += sigma1(F[8 + 16 - 14]);
T += F[8 + 16] + F[8 + 16 - 9];
F[0] = A;
F[4] = E;
F[8] = T;
T += F[7] + Sigma1(E) + Ch(E, F[5], F[6]) + K512[i];
E = F[3] + T;
A = T + Sigma0(A) + Maj(A, F[1], F[2]);
}
state[0] += A;
state[1] += F[1];
state[2] += F[2];
state[3] += F[3];
state[4] += E;
state[5] += F[5];
state[6] += F[6];
state[7] += F[7];
in += 16 * 8;
}
}
#else
#define ROUND_00_15(i, a, b, c, d, e, f, g, h) \
do { \
T1 += h + Sigma1(e) + Ch(e, f, g) + K512[i]; \
h = Sigma0(a) + Maj(a, b, c); \
d += T1; \
h += T1; \
} while (0)
#define ROUND_16_80(i, j, a, b, c, d, e, f, g, h, X) \
do { \
s0 = X[(j + 1) & 0x0f]; \
s0 = sigma0(s0); \
s1 = X[(j + 14) & 0x0f]; \
s1 = sigma1(s1); \
T1 = X[(j) & 0x0f] += s0 + s1 + X[(j + 9) & 0x0f]; \
ROUND_00_15(i + j, a, b, c, d, e, f, g, h); \
} while (0)
static void sha512_block_data_order(uint64_t *state, const uint8_t *in,
size_t num) {
uint64_t a, b, c, d, e, f, g, h, s0, s1, T1;
uint64_t X[16];
int i;
while (num--) {
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
f = state[5];
g = state[6];
h = state[7];
T1 = X[0] = CRYPTO_load_u64_be(in);
ROUND_00_15(0, a, b, c, d, e, f, g, h);
T1 = X[1] = CRYPTO_load_u64_be(in + 8);
ROUND_00_15(1, h, a, b, c, d, e, f, g);
T1 = X[2] = CRYPTO_load_u64_be(in + 2 * 8);
ROUND_00_15(2, g, h, a, b, c, d, e, f);
T1 = X[3] = CRYPTO_load_u64_be(in + 3 * 8);
ROUND_00_15(3, f, g, h, a, b, c, d, e);
T1 = X[4] = CRYPTO_load_u64_be(in + 4 * 8);
ROUND_00_15(4, e, f, g, h, a, b, c, d);
T1 = X[5] = CRYPTO_load_u64_be(in + 5 * 8);
ROUND_00_15(5, d, e, f, g, h, a, b, c);
T1 = X[6] = CRYPTO_load_u64_be(in + 6 * 8);
ROUND_00_15(6, c, d, e, f, g, h, a, b);
T1 = X[7] = CRYPTO_load_u64_be(in + 7 * 8);
ROUND_00_15(7, b, c, d, e, f, g, h, a);
T1 = X[8] = CRYPTO_load_u64_be(in + 8 * 8);
ROUND_00_15(8, a, b, c, d, e, f, g, h);
T1 = X[9] = CRYPTO_load_u64_be(in + 9 * 8);
ROUND_00_15(9, h, a, b, c, d, e, f, g);
T1 = X[10] = CRYPTO_load_u64_be(in + 10 * 8);
ROUND_00_15(10, g, h, a, b, c, d, e, f);
T1 = X[11] = CRYPTO_load_u64_be(in + 11 * 8);
ROUND_00_15(11, f, g, h, a, b, c, d, e);
T1 = X[12] = CRYPTO_load_u64_be(in + 12 * 8);
ROUND_00_15(12, e, f, g, h, a, b, c, d);
T1 = X[13] = CRYPTO_load_u64_be(in + 13 * 8);
ROUND_00_15(13, d, e, f, g, h, a, b, c);
T1 = X[14] = CRYPTO_load_u64_be(in + 14 * 8);
ROUND_00_15(14, c, d, e, f, g, h, a, b);
T1 = X[15] = CRYPTO_load_u64_be(in + 15 * 8);
ROUND_00_15(15, b, c, d, e, f, g, h, a);
for (i = 16; i < 80; i += 16) {
ROUND_16_80(i, 0, a, b, c, d, e, f, g, h, X);
ROUND_16_80(i, 1, h, a, b, c, d, e, f, g, X);
ROUND_16_80(i, 2, g, h, a, b, c, d, e, f, X);
ROUND_16_80(i, 3, f, g, h, a, b, c, d, e, X);
ROUND_16_80(i, 4, e, f, g, h, a, b, c, d, X);
ROUND_16_80(i, 5, d, e, f, g, h, a, b, c, X);
ROUND_16_80(i, 6, c, d, e, f, g, h, a, b, X);
ROUND_16_80(i, 7, b, c, d, e, f, g, h, a, X);
ROUND_16_80(i, 8, a, b, c, d, e, f, g, h, X);
ROUND_16_80(i, 9, h, a, b, c, d, e, f, g, X);
ROUND_16_80(i, 10, g, h, a, b, c, d, e, f, X);
ROUND_16_80(i, 11, f, g, h, a, b, c, d, e, X);
ROUND_16_80(i, 12, e, f, g, h, a, b, c, d, X);
ROUND_16_80(i, 13, d, e, f, g, h, a, b, c, X);
ROUND_16_80(i, 14, c, d, e, f, g, h, a, b, X);
ROUND_16_80(i, 15, b, c, d, e, f, g, h, a, X);
}
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
state[5] += f;
state[6] += g;
state[7] += h;
in += 16 * 8;
}
}
#endif
#endif // !SHA512_ASM
#undef Sigma0
#undef Sigma1
#undef sigma0
#undef sigma1
#undef Ch
#undef Maj
#undef ROUND_00_15
#undef ROUND_16_80